Fingolimod as a Treatment of Cerebral Edema After Intracerebral Hemorrhage
NCT ID: NCT04088630
Last Updated: 2025-01-23
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
EARLY_PHASE1
28 participants
INTERVENTIONAL
2020-08-07
2024-06-05
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Fingolimod in Minimal Invasive Treatment of Intracerebral Hemorrhage
NCT06087965
Fingolimod in Endovascular Treatment of Ischemic Stroke
NCT04629872
Safety Study of CN-105 Neuroprotective Peptide for Intracerebral Hemorrhage
NCT02670824
Evaluation of CN-105 in Subject With Acute Supratentorial Intracerebral Hemorrhage
NCT03711903
Study of Stroke Related Edema Treatments
NCT01954290
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Fingolimod
In addition to Standard of care treatment, those participants randomized to the fingolimod group will receive a single dose of 0.5 mg oral fingolimod within 24 hours of symptom onset.
Fingolimod
A single dose of 0.5 mg oral fingolimod within 24 hours of symptom onset
Placebo Control
In addition to Standard of care treatment, those participants randomized to the control group will receive a single dose placebo pill within 24 hours of symptom onset
Placebo
A single oral placebo pill within 24 hours of symptom onset
Open-label Fingolimod
In addition to standard of care treatment,10 subjects who are unable to be administered oral medication will be assigned to the open-label group who will receive a single dose of 0.5 mg oral fingolimod within 24 hours of symptom onset to assess feasibility of administration through NGT or Dobhoff tube.
Open-label Fingolimod
A single dose of 0.5 mg fingolimod through an NGT or Dobhoff tube within 24 hours of symptom onset
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Fingolimod
A single dose of 0.5 mg oral fingolimod within 24 hours of symptom onset
Placebo
A single oral placebo pill within 24 hours of symptom onset
Open-label Fingolimod
A single dose of 0.5 mg fingolimod through an NGT or Dobhoff tube within 24 hours of symptom onset
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Stated willingness to comply with all study procedures and availability for the duration of the study.
Men and non-pregnant women ages 18-80 years old Has a confirmed diagnosis of spontaneous supratentorial ICH. The presence of cerebellar ICH is exclusionary. Presence of hydrocephalus due to mass effect and cerebral edema is not exclusionary. If the patient has hydrocephalus requiring CSF drainage, an external ventricular drain will be placed as standard of care and will not be exclusionary.
Symptoms less than 24 hours prior to enrollment if all eligibility criteria are met. An unknown time of onset is exclusionary. Use the time the patient was last known to be well for patients that awaken from sleep with symptoms.
Has a GCS score ≥ 5 on presentation. Has a National Institutes of Health Stroke Scale (NIHSS) score ≥ 4 on presentation.
Maintenance of SBP \< 200 mmHg at the time of enrollment and randomization. Historical Modified Rankin Scale score of 0-2.
Exclusion Criteria
Ruptured aneurysm, arteriovenous malformation (AVM), vascular anomaly, Moyamoya disease, hemorrhagic conversion of an ischemic infarct, recurrence of recent (\< 1 year) hemorrhage, neoplasms diagnosed with radiographic imaging.
Patients with unstable mass or evolving intracranial compartment syndrome. Brainstem hemorrhage or irreversible impaired brain stem function (bilateral fixed, dilated pupils and extensor motor posturing), GCS ≤ 4.
Platelet count \< 100,000; INR \> 1.4. Any irreversible coagulopathy or known clotting disorder. Known history of Mobitz Type II second-degree or third-degree atrioventricular (AV) block or sick sinus syndrome.
Admission within the past 6 months for the following: myocardial infarction, unstable angina, stroke, decompensated heart failure requiring hospitalization, or Class III/IV heart failure.
Baseline QTc interval ≥500 ms. Current treatment with Class Ia or Class III anti-arrhythmic drugs. Implanted cardiac devices that are not compatible with the desired MRI sequences needed for the study (non-contrast T1, T2, SWI/GRE, and FLAIR sequences).
Abnormal liver function or liver failure. Active acute infection that is deemed by the Principal Investigator to be clinically significant.
Chronic viral or fungal infection. Active use of antineoplastic, immunosuppressive, or immunomodulating therapies. Leukopenia with a WBC \< 2.0 x 109/L. Not expected to survive to the 365 day visit due to co-morbidities or is DNR/DNI status prior to randomization.
Active drug or alcohol use or dependence that, in the opinion of the investigator, would interfere with adherence to study requirements.
Concomitant enrollment in another interventional study. Inability or unwillingness of participant or legal guardian/representative to give written informed consent.
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Wake Forest University Health Sciences
OTHER
National Center for Advancing Translational Sciences (NCATS)
NIH
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Stacey Q Wolfe, MD
Role: PRINCIPAL_INVESTIGATOR
Wake Forest University Health Sciences
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Wake Forest University Health Sciences
Winston-Salem, North Carolina, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009 May 9;373(9675):1632-44. doi: 10.1016/S0140-6736(09)60371-8.
van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010 Feb;9(2):167-76. doi: 10.1016/S1474-4422(09)70340-0. Epub 2010 Jan 5.
Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry. 2005 Nov;76(11):1534-8. doi: 10.1136/jnnp.2004.055145.
WRITING GROUP MEMBERS; Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Roger VL, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010 Feb 23;121(7):e46-e215. doi: 10.1161/CIRCULATIONAHA.109.192667. Epub 2009 Dec 17. No abstract available.
Qureshi AI, Suri MF, Nasar A, Kirmani JF, Ezzeddine MA, Divani AA, Giles WH. Changes in cost and outcome among US patients with stroke hospitalized in 1990 to 1991 and those hospitalized in 2000 to 2001. Stroke. 2007 Jul;38(7):2180-4. doi: 10.1161/STROKEAHA.106.467506. Epub 2007 May 24.
Adeoye O, Broderick JP. Advances in the management of intracerebral hemorrhage. Nat Rev Neurol. 2010 Nov;6(11):593-601. doi: 10.1038/nrneurol.2010.146. Epub 2010 Sep 28.
Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006 Jan;5(1):53-63. doi: 10.1016/S1474-4422(05)70283-0.
Ariesen MJ, Claus SP, Rinkel GJ, Algra A. Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke. 2003 Aug;34(8):2060-5. doi: 10.1161/01.STR.0000080678.09344.8D. Epub 2003 Jul 3.
Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993 Jul;24(7):987-93. doi: 10.1161/01.str.24.7.987.
Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF; MISTIE Investigators. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013 Mar;44(3):627-34. doi: 10.1161/STROKEAHA.111.000411. Epub 2013 Feb 7.
Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013 Aug 3;382(9890):397-408. doi: 10.1016/S0140-6736(13)60986-1. Epub 2013 May 29.
Morgenstern LB, Hemphill JC 3rd, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, MacDonald RL, Messe SR, Mitchell PH, Selim M, Tamargo RJ; American Heart Association Stroke Council and Council on Cardiovascular Nursing. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010 Sep;41(9):2108-29. doi: 10.1161/STR.0b013e3181ec611b. Epub 2010 Jul 22.
Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus. 2012 Apr;32(4):E8. doi: 10.3171/2012.1.FOCUS11366.
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014 Apr;115:25-44. doi: 10.1016/j.pneurobio.2013.11.003. Epub 2013 Nov 26.
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010 Dec;92(4):463-77. doi: 10.1016/j.pneurobio.2010.08.001. Epub 2010 Aug 14.
Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007 May;27(5):894-908. doi: 10.1038/sj.jcbfm.9600403. Epub 2006 Oct 11.
Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011 Jun;42(6):1781-6. doi: 10.1161/STROKEAHA.110.596718. Epub 2011 Apr 28.
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012 Aug;11(8):720-31. doi: 10.1016/S1474-4422(12)70104-7. Epub 2012 Jun 13.
Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013 Feb;39(1):3-18. doi: 10.1111/nan.12011.
Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151-70. doi: 10.1016/0306-4522(90)90229-w.
Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016 Jul;142:23-44. doi: 10.1016/j.pneurobio.2016.05.001. Epub 2016 May 7.
Wasserman JK, Zhu X, Schlichter LC. Evolution of the inflammatory response in the brain following intracerebral hemorrhage and effects of delayed minocycline treatment. Brain Res. 2007 Nov 14;1180:140-54. doi: 10.1016/j.brainres.2007.08.058. Epub 2007 Sep 5.
Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol. 2013;2013:746068. doi: 10.1155/2013/746068. Epub 2013 Oct 10.
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014 Nov 20;8:388. doi: 10.3389/fncel.2014.00388. eCollection 2014.
Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci. 2017 Oct 13;18(10):2135. doi: 10.3390/ijms18102135.
Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/Macrophage Polarization After Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2015 Dec;6(6):407-9. doi: 10.1007/s12975-015-0428-4. Epub 2015 Oct 7. No abstract available.
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017 Jul;13(7):420-433. doi: 10.1038/nrneurol.2017.69. Epub 2017 May 19.
Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J. Microglial Polarization and Inflammatory Mediators After Intracerebral Hemorrhage. Mol Neurobiol. 2017 Apr;54(3):1874-1886. doi: 10.1007/s12035-016-9785-6. Epub 2016 Feb 19.
Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015 Jan;11(1):56-64. doi: 10.1038/nrneurol.2014.207. Epub 2014 Nov 11.
Eggen BJ, Raj D, Hanisch UK, Boddeke HW. Microglial phenotype and adaptation. J Neuroimmune Pharmacol. 2013 Sep;8(4):807-23. doi: 10.1007/s11481-013-9490-4. Epub 2013 Jul 25.
Shichita T, Sakaguchi R, Suzuki M, Yoshimura A. Post-ischemic inflammation in the brain. Front Immunol. 2012 May 31;3:132. doi: 10.3389/fimmu.2012.00132. eCollection 2012.
Hendrix S, Nitsch R. The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol. 2007 Mar;184(1-2):100-12. doi: 10.1016/j.jneuroim.2006.11.019. Epub 2007 Jan 2.
Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8389-94. doi: 10.1073/pnas.1433000100. Epub 2003 Jun 26.
Arumugam TV, Granger DN, Mattson MP. Stroke and T-cells. Neuromolecular Med. 2005;7(3):229-42. doi: 10.1385/NMM:7:3:229.
Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006 May 2;113(17):2105-12. doi: 10.1161/CIRCULATIONAHA.105.593046. Epub 2006 Apr 24.
Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab. 2007 Nov;27(11):1798-805. doi: 10.1038/sj.jcbfm.9600482. Epub 2007 Mar 28.
Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009 Feb;15(2):192-9. doi: 10.1038/nm.1927. Epub 2009 Jan 25.
Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, Zhu WY, Liao MF, Wu LR, Yang YR, Liu J, Duan CM, Li J, Gong QW, Liu L, Yang MH, Xiong A, Wang J, Yang QW. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab. 2017 Mar;37(3):967-979. doi: 10.1177/0271678X16648712. Epub 2016 Jul 20.
Loftspring MC, McDole J, Lu A, Clark JF, Johnson AJ. Intracerebral hemorrhage leads to infiltration of several leukocyte populations with concomitant pathophysiological changes. J Cereb Blood Flow Metab. 2009 Jan;29(1):137-43. doi: 10.1038/jcbfm.2008.114. Epub 2008 Oct 1.
Guo FQ, Li XJ, Chen LY, Yang H, Dai HY, Wei YS, Huang YL, Yang YS, Sun HB, Xu YC, Yang ZL. [Study of relationship between inflammatory response and apoptosis in perihematoma region in patients with intracerebral hemorrhage]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2006 May;18(5):290-3. Chinese.
Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009 May;40(5):1849-57. doi: 10.1161/STROKEAHA.108.534503. Epub 2009 Mar 5.
Gu L, Xiong X, Zhang H, Xu B, Steinberg GK, Zhao H. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012 Jul;43(7):1941-6. doi: 10.1161/STROKEAHA.112.656611. Epub 2012 Jun 7.
Theodorou GL, Marousi S, Ellul J, Mougiou A, Theodori E, Mouzaki A, Karakantza M. T helper 1 (Th1)/Th2 cytokine expression shift of peripheral blood CD4+ and CD8+ T cells in patients at the post-acute phase of stroke. Clin Exp Immunol. 2008 Jun;152(3):456-63. doi: 10.1111/j.1365-2249.2008.03650.x. Epub 2008 Apr 16.
Gao L, Lu Q, Huang LJ, Ruan LH, Yang JJ, Huang WL, ZhuGe WS, Zhang YL, Fu B, Jin KL, ZhuGe QC. Transplanted neural stem cells modulate regulatory T, gammadelta T cells and corresponding cytokines after intracerebral hemorrhage in rats. Int J Mol Sci. 2014 Mar 13;15(3):4431-41. doi: 10.3390/ijms15034431.
Mao LL, Yuan H, Wang WW, Wang YJ, Yang MF, Sun BL, Zhang ZY, Yang XY. Adoptive Regulatory T-cell Therapy Attenuates Perihematomal Inflammation in a Mouse Model of Experimental Intracerebral Hemorrhage. Cell Mol Neurobiol. 2017 Jul;37(5):919-929. doi: 10.1007/s10571-016-0429-1. Epub 2016 Sep 27.
Kappos L, Radue EW, O'Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P; FREEDOMS Study Group. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010 Feb 4;362(5):387-401. doi: 10.1056/NEJMoa0909494. Epub 2010 Jan 20.
Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, Vollmer T, Agius MA, Kappos L, Stites T, Li B, Cappiello L, von Rosenstiel P, Lublin FD. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014 Jun;13(6):545-56. doi: 10.1016/S1474-4422(14)70049-3. Epub 2014 Mar 28.
Groves A, Kihara Y, Chun J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci. 2013 May 15;328(1-2):9-18. doi: 10.1016/j.jns.2013.02.011. Epub 2013 Mar 19.
Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol. 2011 May;69(5):759-77. doi: 10.1002/ana.22426.
Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010 Mar-Apr;33(2):91-101. doi: 10.1097/WNF.0b013e3181cbf825.
Chiba K. FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacol Ther. 2005 Dec;108(3):308-19. doi: 10.1016/j.pharmthera.2005.05.002. Epub 2005 Jun 13.
Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (fingolimod) in multiple sclerosis. Arch Pharm Res. 2010 Oct;33(10):1567-74. doi: 10.1007/s12272-010-1008-5. Epub 2010 Oct 30.
David OJ, Kovarik JM, Schmouder RL. Clinical pharmacokinetics of fingolimod. Clin Pharmacokinet. 2012 Jan 1;51(1):15-28. doi: 10.2165/11596550-000000000-00000.
Jin Y, Zollinger M, Borell H, Zimmerlin A, Patten CJ. CYP4F enzymes are responsible for the elimination of fingolimod (FTY720), a novel treatment of relapsing multiple sclerosis. Drug Metab Dispos. 2011 Feb;39(2):191-8. doi: 10.1124/dmd.110.035378. Epub 2010 Nov 2.
Zollinger M, Gschwind HP, Jin Y, Sayer C, Zecri F, Hartmann S. Absorption and disposition of the sphingosine 1-phosphate receptor modulator fingolimod (FTY720) in healthy volunteers: a case of xenobiotic biotransformation following endogenous metabolic pathways. Drug Metab Dispos. 2011 Feb;39(2):199-207. doi: 10.1124/dmd.110.035907. Epub 2010 Nov 2.
Kovarik JM, Schmouder R, Barilla D, Wang Y, Kraus G. Single-dose FTY720 pharmacokinetics, food effect, and pharmacological responses in healthy subjects. Br J Clin Pharmacol. 2004 May;57(5):586-91. doi: 10.1111/j.1365-2125.2003.02065.x.
Budde K, Schmouder RL, Brunkhorst R, Nashan B, Lucker PW, Mayer T, Choudhury S, Skerjanec A, Kraus G, Neumayer HH. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol. 2002 Apr;13(4):1073-1083. doi: 10.1681/ASN.V1341073.
Tham CS, Lin FF, Rao TS, Yu N, Webb M. Microglial activation state and lysophospholipid acid receptor expression. Int J Dev Neurosci. 2003 Dec;21(8):431-43. doi: 10.1016/j.ijdevneu.2003.09.003.
Okada T, Kajimoto T, Jahangeer S, Nakamura S. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal. 2009 Jan;21(1):7-13. doi: 10.1016/j.cellsig.2008.07.011. Epub 2008 Jul 22.
Melendez AJ. Sphingosine kinase signalling in immune cells: potential as novel therapeutic targets. Biochim Biophys Acta. 2008 Jan;1784(1):66-75. doi: 10.1016/j.bbapap.2007.07.013. Epub 2007 Aug 14.
Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience. 2010 Mar 10;166(1):132-44. doi: 10.1016/j.neuroscience.2009.12.020. Epub 2009 Dec 28.
Noda H, Takeuchi H, Mizuno T, Suzumura A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol. 2013 Mar 15;256(1-2):13-8. doi: 10.1016/j.jneuroim.2012.12.005. Epub 2013 Jan 3.
Rothhammer V, Kenison JE, Tjon E, Takenaka MC, de Lima KA, Borucki DM, Chao CC, Wilz A, Blain M, Healy L, Antel J, Quintana FJ. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2012-2017. doi: 10.1073/pnas.1615413114. Epub 2017 Feb 6.
Qin C, Fan WH, Liu Q, Shang K, Murugan M, Wu LJ, Wang W, Tian DS. Fingolimod Protects Against Ischemic White Matter Damage by Modulating Microglia Toward M2 Polarization via STAT3 Pathway. Stroke. 2017 Dec;48(12):3336-3346. doi: 10.1161/STROKEAHA.117.018505. Epub 2017 Nov 7.
Das A, Arifuzzaman S, Kim SH, Lee YS, Jung KH, Chai YG. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing. Neuropharmacology. 2017 Jun;119:1-14. doi: 10.1016/j.neuropharm.2017.03.034. Epub 2017 Mar 31.
Sucksdorff M, Rissanen E, Tuisku J, Nuutinen S, Paavilainen T, Rokka J, Rinne J, Airas L. Evaluation of the Effect of Fingolimod Treatment on Microglial Activation Using Serial PET Imaging in Multiple Sclerosis. J Nucl Med. 2017 Oct;58(10):1646-1651. doi: 10.2967/jnumed.116.183020. Epub 2017 Mar 23.
Delbridge MS, Shrestha BM, Raftery AT, El Nahas AM, Haylor JL. Reduction of ischemia-reperfusion injury in the rat kidney by FTY720, a synthetic derivative of sphingosine. Transplantation. 2007 Jul 27;84(2):187-95. doi: 10.1097/01.tp.0000269794.74990.da.
Man K, Ng KT, Lee TK, Lo CM, Sun CK, Li XL, Zhao Y, Ho JW, Fan ST. FTY720 attenuates hepatic ischemia-reperfusion injury in normal and cirrhotic livers. Am J Transplant. 2005 Jan;5(1):40-9. doi: 10.1111/j.1600-6143.2004.00642.x.
Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 2010 Feb;41(2):368-74. doi: 10.1161/STROKEAHA.109.568899. Epub 2009 Nov 25.
Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T, Alsharif N, Brinkmann V, Liao JK, Lo EH, Waeber C. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011 Jan;69(1):119-29. doi: 10.1002/ana.22186. Epub 2010 Nov 12.
Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, Han W, Xue R, Liu Q, Hao J, Yu C, Shi FD. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18315-20. doi: 10.1073/pnas.1416166111. Epub 2014 Dec 8.
Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, Dong Y, Xu X, Liu Q, Huang D, Shi FD. Combination of the Immune Modulator Fingolimod With Alteplase in Acute Ischemic Stroke: A Pilot Trial. Circulation. 2015 Sep 22;132(12):1104-1112. doi: 10.1161/CIRCULATIONAHA.115.016371. Epub 2015 Jul 22.
Lu L, Barfejani AH, Qin T, Dong Q, Ayata C, Waeber C. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage. Brain Res. 2014 Mar 25;1555:89-96. doi: 10.1016/j.brainres.2014.01.048. Epub 2014 Feb 3.
Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol. 2013 Mar;241:45-55. doi: 10.1016/j.expneurol.2012.12.009. Epub 2012 Dec 21.
Sun N, Shen Y, Han W, Shi K, Wood K, Fu Y, Hao J, Liu Q, Sheth KN, Huang D, Shi FD. Selective Sphingosine-1-Phosphate Receptor 1 Modulation Attenuates Experimental Intracerebral Hemorrhage. Stroke. 2016 Jul;47(7):1899-906. doi: 10.1161/STROKEAHA.115.012236. Epub 2016 May 12.
Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, Yan Y, Huang D, Yu C, Shi FD. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014 Sep;71(9):1092-101. doi: 10.1001/jamaneurol.2014.1065.
Murthy SB, Moradiya Y, Shah J, Merkler AE, Mangat HS, Iadacola C, Hanley DF, Kamel H, Ziai WC. Nosocomial Infections and Outcomes after Intracerebral Hemorrhage: A Population-Based Study. Neurocrit Care. 2016 Oct;25(2):178-84. doi: 10.1007/s12028-016-0282-6.
Lord AS, Gilmore E, Choi HA, Mayer SA; VISTA-ICH Collaboration. Time course and predictors of neurological deterioration after intracerebral hemorrhage. Stroke. 2015 Mar;46(3):647-52. doi: 10.1161/STROKEAHA.114.007704. Epub 2015 Feb 5.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25.
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014 Apr 1;30(7):923-30. doi: 10.1093/bioinformatics/btt656. Epub 2013 Nov 13.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
Ching T, Huang S, Garmire LX. Power analysis and sample size estimation for RNA-Seq differential expression. RNA. 2014 Nov;20(11):1684-96. doi: 10.1261/rna.046011.114. Epub 2014 Sep 22.
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300
Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014 Feb 15;30(4):523-30. doi: 10.1093/bioinformatics/btt703. Epub 2013 Dec 13.
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W169-75. doi: 10.1093/nar/gkm415. Epub 2007 Jun 18.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Related Links
Access external resources that provide additional context or updates about the study.
Minimally Invasive Surgery Plus Rt-PA for ICH Evacuation Phase III
MIND: Artemis in the Removal of Intracerebral Hemorrhage
ENRICH: Early MiNimally-invasive Removal of IntraCerebral Hemorrhage (ICH)
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB00060619
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.