Effects of Vigiis 101-LAB on a Healthy Populations' Gut Microflora
NCT ID: NCT04088474
Last Updated: 2019-09-13
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
36 participants
INTERVENTIONAL
2016-03-05
2016-12-18
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of Vigiis 101-LAB on a Healthy Populations' Gut Microflora, Peristalsis, Immunity, and Anti-oxidative Capacity
NCT04046432
Probiotics in the Reduction of Adverse Effects and Dysbiosis of H. Pylori Eradication
NCT03722433
Research on the Improvement of Intestinal and Immune Functions by Probiotics
NCT06873425
The Impact of Compound Probiotic Freeze-dried Powder on Enhancing Gastrointestinal Health
NCT07025798
Research on the Role of Probiotics in Human Intestinal Health
NCT06886711
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
1.2 Materials The strain used in the current study was L. paracasei subsp. paracasei NTU 101 (lyophilized powdered, Vigiis 101-LAB; probiotic powder from SunWay Biotech Co., Ltd., Taipei, Taiwan). The Vigiis 101-LAB mixed lactose, crystalline cellulose, and excipient were made into capsules (Vigiis 101-LAB capsule) containing 5 billion bacteria per capsule for the gut flora clinical trial. Maltodextrin was used as a placebo.
1.3 Randomized, double-blind clinical criteria of effects of Vigiis 101-LAB capsule I on gut flora (clinical trial) Vigiis 101-LAB capsule was administered orally once per day, one capsule each time. The entire study took 4 weeks, and subjects were prohibited from eating fermented food products, such as miso, kimchi, fermented dairy products, oligosaccharide-containing foods, and lactic acid bacteria-containing products. Subjects also avoided consuming excessive gas-producing foods (such as soybeans and sweet potatoes) during their daily meals and avoided foods that can cause abdominal distension or promote peristalsis (such as lactic acid beverages and oligosaccharide-containing beverages). After the trial started, subjects recorded their daily number of bowel movements and completed relevant questionnaires at weeks 0, 2, and 4. The subjects visited the doctor once every 2 weeks for monitoring gastrointestinal function and physiological characteristics. At weeks 0, 1, 2, 3, and 4, fecal samples from the subjects were collected and put into bottles containing an anaerobic diluent and shaken to uniformly mix the feces and diluent.
1.4 Outcome measurements Fecal moisture content and pH value testing. Blood biochemical tests were carried out in the laboratory.
1.5. Statistical analysis Data are expressed as the mean ± standard deviation (SD). The statistical significance of the biochemical analyses was determined by one-way analysis of variance (ANOVA) using the general linear model procedure of the statistical product and service solutions software (SPSS Institute, Inc., Chicago, IL, USA). This was followed by ANOVA with a paired t-test to evaluate the difference before and after sample and placebo administration, while the Student t-test was used to compare the difference between test and placebo groups (P ≤ 0.05).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
FACTORIAL
BASIC_SCIENCE
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Vigiis 101-LAB
The Vigiis 101-LAB mixed lactose, crystalline cellulose, and excipient were made into capsules (Vigiis 101-LAB capsule I) containing 5 billion bacteria per capsule for the gut flora clinical trial. The Vigiis 101-LAB mixed lactose, crystalline cellulose, and excipient were also mixed into capsules (Vigiis 101- LAB capsule II) containing 5 billion bacteria per capsule for clinical trial.
Vigiis 101-LAB
examined the effects of the Vigiis 101-LAB capsules (5 billion CFU/day)
placebo
Maltodextrin was used as a placebo.
Placebo
Maltodextrin was used as a placebo
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Vigiis 101-LAB
examined the effects of the Vigiis 101-LAB capsules (5 billion CFU/day)
Placebo
Maltodextrin was used as a placebo
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Subjects with normal weight (body mass index: 18.5-24).
3. Subjects with no gastrointestinal diseases or on medication.
Exclusion Criteria
2. Subjects who are allergic to Lactobacillus.
3. Subjects with chronic gastrointestinal diseases.
4. Subjects who previously underwent gastrectomy or gastric bypass.
5. Subjects with liver, kidney, or heart disease, alcoholism, or uncontrolled diabetes.
6. Subjects who developed stroke, psychiatric diseases, or depression within the last 1 year.
7. Subjects being administered drugs that can regulate gastrointestinal function, functional foods, bacteriostatic drugs or supplements, antibiotics, antioxidants, or other unknown drugs within the last 2 weeks.
20 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
SunWay Biotech Co., LTD.
INDUSTRY
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jyh Ming Liou, MD,PHD
Role: STUDY_DIRECTOR
National Taiwan University Hospital
Tsong Ming Lu, MD
Role: PRINCIPAL_INVESTIGATOR
Cheng Hsin Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine
Taipei, , Taiwan
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Agace WW, McCoy KD. Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity. 2017 Apr 18;46(4):532-548. doi: 10.1016/j.immuni.2017.04.004.
Arnao MB, Cano A, Hernandez-Ruiz J, Garcia-Canovas F, Acosta M. Inhibition by L-ascorbic acid and other antioxidants of the 2.2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Anal Biochem. 1996 May 1;236(2):255-61. doi: 10.1006/abio.1996.0164.
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011 Jan 21;331(6015):337-41. doi: 10.1126/science.1198469. Epub 2010 Dec 23.
Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014 Mar 27;157(1):121-41. doi: 10.1016/j.cell.2014.03.011.
Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota. Immunity. 2017 Apr 18;46(4):562-576. doi: 10.1016/j.immuni.2017.04.008.
Bengmark S. Gut microbiota, immune development and function. Pharmacol Res. 2013 Mar;69(1):87-113. doi: 10.1016/j.phrs.2012.09.002. Epub 2012 Sep 16.
Bridgman SL, Azad MB, Field CJ, Haqq AM, Becker AB, Mandhane PJ, Subbarao P, Turvey SE, Sears MR, Scott JA, Wishart DS, Kozyrskyj AL; CHILD Study Investigators. Fecal Short-Chain Fatty Acid Variations by Breastfeeding Status in Infants at 4 Months: Differences in Relative versus Absolute Concentrations. Front Nutr. 2017 Apr 10;4:11. doi: 10.3389/fnut.2017.00011. eCollection 2017.
Chen T, Isomaki P, Rimpilainen M, Toivanen P. Human cytokine responses induced by gram-positive cell walls of normal intestinal microbiota. Clin Exp Immunol. 1999 Nov;118(2):261-7. doi: 10.1046/j.1365-2249.1999.01047.x.
Kopp-Hoolihan L. Prophylactic and therapeutic uses of probiotics: a review. J Am Diet Assoc. 2001 Feb;101(2):229-38; quiz 239-41. doi: 10.1016/S0002-8223(01)00060-8.
Krasowska A, Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front Cell Infect Microbiol. 2014 Aug 19;4:112. doi: 10.3389/fcimb.2014.00112. eCollection 2014.
Lee N, Kim WU. Microbiota in T-cell homeostasis and inflammatory diseases. Exp Mol Med. 2017 May 26;49(5):e340. doi: 10.1038/emm.2017.36.
Dement JM, Epling C, Joyner J, Cavanaugh K. Impacts of Workplace Health Promotion and Wellness Programs on Health Care Utilization and Costs: Results From an Academic Workplace. J Occup Environ Med. 2015 Nov;57(11):1159-69. doi: 10.1097/JOM.0000000000000555.
Lin FM, Chiu CH, Pan TM. Fermentation of a milk-soymilk and Lycium chinense Miller mixture using a new isolate of Lactobacillus paracasei subsp. paracasei NTU101 and Bifidobacterium longum. J Ind Microbiol Biotechnol. 2004 Dec;31(12):559-64. doi: 10.1007/s10295-004-0184-z. Epub 2004 Nov 18.
Liu CF, Tung YT, Wu CL, Lee BH, Hsu WH, Pan TM. Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J Agric Food Chem. 2011 May 11;59(9):4537-43. doi: 10.1021/jf104985v. Epub 2011 Apr 4.
Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul;4(8):118-26. doi: 10.4103/0973-7847.70902.
Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996 Apr 22;384(3):240-2. doi: 10.1016/0014-5793(96)00323-7.
Naidu AS, Bidlack WR, Clemens RA. Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr. 1999 Jan;39(1):13-126. doi: 10.1080/10408699991279187.
Orrhage K, Sillerstrom E, Gustafsson JA, Nord CE, Rafter J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res. 1994 Dec 1;311(2):239-48. doi: 10.1016/0027-5107(94)90182-1.
Ouwehand AC, Isolauri E, Kirjavainen PV, Tolkko S, Salminen SJ. The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of Lactobacillus GG and Lact. delbrueckii subsp. bulgaricus. Lett Appl Microbiol. 2000 Jan;30(1):10-3. doi: 10.1046/j.1472-765x.2000.00590.x.
Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek. 2002 Aug;82(1-4):279-89.
Pant N, Marcotte H, Brussow H, Svensson L, Hammarstrom L. Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiol. 2007 Sep 27;7:86. doi: 10.1186/1471-2180-7-86.
Perdigon G, Vintini E, Alvarez S, Medina M, Medici M. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J Dairy Sci. 1999 Jun;82(6):1108-14. doi: 10.3168/jds.S0022-0302(99)75333-6.
Pool-Zobel BL, Neudecker C, Domizlaff I, Ji S, Schillinger U, Rumney C, Moretti M, Vilarini I, Scassellati-Sforzolini R, Rowland I. Lactobacillus- and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr Cancer. 1996;26(3):365-80. doi: 10.1080/01635589609514492.
Rafter J. The effects of probiotics on colon cancer development. Nutr Res Rev. 2004 Dec;17(2):277-84. doi: 10.1079/NRR200484.
Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus. Lancet. 1994 Oct 15;344(8929):1046-9. doi: 10.1016/s0140-6736(94)91708-6.
Sekine K, Toida T, Saito M, Kuboyama M, Kawashima T, Hashimoto Y. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Res. 1985 Mar;45(3):1300-7.
Sheng Y, Yang X, Lian Y, Zhang B, He X, Xu W, Huang K. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods. Environ Toxicol Pharmacol. 2016 Sep;46:286-291. doi: 10.1016/j.etap.2016.08.008. Epub 2016 Aug 6.
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013 Aug 2;341(6145):569-73. doi: 10.1126/science.1241165. Epub 2013 Jul 4.
Stecher B. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0008-2014.
Sun Y, O'Riordan MX. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv Appl Microbiol. 2013;85:93-118. doi: 10.1016/B978-0-12-407672-3.00003-4.
Tomkovich S, Jobin C. Microbiota and host immune responses: a love-hate relationship. Immunology. 2016 Jan;147(1):1-10. doi: 10.1111/imm.12538. Epub 2015 Nov 2.
Tsai TY, Chu LH, Lee CL, Pan TM. Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordica charantia. J Agric Food Chem. 2009 Mar 11;57(5):2065-71. doi: 10.1021/jf802936c.
Tsai YT, Cheng PC, Fan CK, Pan TM. Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. Int J Food Microbiol. 2008 Dec 10;128(2):219-25. doi: 10.1016/j.ijfoodmicro.2008.08.009. Epub 2008 Aug 26.
Tuson HH, Weibel DB. Bacteria-surface interactions. Soft Matter. 2013 May 14;9(18):4368-4380. doi: 10.1039/C3SM27705D.
Van de Water J, Keen CL, Gershwin ME. The influence of chronic yogurt consumption on immunity. J Nutr. 1999 Jul;129(7 Suppl):1492S-5S. doi: 10.1093/jn/129.7.1492S.
Yu X, Li S, Yang D, Qiu L, Wu Y, Wang D, Shah NP, Xu F, Wei H. A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice. J Dairy Sci. 2016 Feb;99(2):903-914. doi: 10.3168/jds.2015-10265. Epub 2015 Dec 17.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Sunway002
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.