Neuroplastic Alterations of the Motor Cortex by Caffeine
NCT ID: NCT04011670
Last Updated: 2019-11-29
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
30 participants
INTERVENTIONAL
2019-07-15
2019-11-19
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Based on this finding, the investigators hypothesize that the antagonistic effect of caffeine can tentatively block the excitatory effects of transcranial alternating current stimulation (tACS). The plasticity effects might differ among caffeine users and non- caffeine users depending on the availability of receptor binding sites.
Apart from that, a major issue in NIBS studies including those studying motor-evoked potentials is the response variability both within and between individuals. The trial to trial variability of motor evoked potentials (MEPs) may be affected by many factors. Inherent to caffeine is its effect on vigilance. In this study, the investigator shall monitor the participant's vigilance by pupillometry to (1) better understand the factors, which might cause variability in transcranial excitability induction studies and (2) to separate the direct pharmacological effect from the indirect attentional effect of caffeine.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
BASIC_SCIENCE
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Caffeine group
Participants will receive a caffeine tablet and all electrical stimulations in a random order (tACS 140 Hz at 1 mA and sham tACS). Participant's vigilance status will be monitor based on active vigilance condition or passive vigilance condition.
200 mg caffeine tablet
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and passive vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and passive vigilance condition
Placebo group
Participants will receive a placebo tablet and all electrical stimulations in a random order (tACS 140 Hz at 1 mA and sham tACS). Participant's vigilance status will be monitor based on active vigilance condition or passive vigilance condition.
Non-active tablet
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and passive vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and passive vigilance condition
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
200 mg caffeine tablet
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and passive vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and passive vigilance condition
Non-active tablet
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) at 1 mA and passive vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and active vigilance condition
* Transcranial alternating current stimulation (140 Hz tACS) sham and passive vigilance condition
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Right-handed (Oldfield 1971).
3. Free willing participation and written, informed consent of all subjects obtained prior to the start of the study.
4. Participant's weight is above 60 kg
Exclusion Criteria
2. Left hand dominant;
3. Evidence of a chronic disease or history with a disorder of the nervous system
4. History of epileptic seizures;
5. Pacemaker or deep brain stimulation;
6. Metal implants in the head region (metal used in the head region, for example, clips after the operation of an intracerebral aneurysm (vessel sacking in the region of the brain vessels), implantation of an artificial auditory canal);
7. Cerebral trauma with loss of consciousness in prehistory;
8. Existence of a serious internal (internal organs) or psychiatric (mental illness)
9. Alcohol, medication or drug addiction;
10. Receptive or global aphasia (disturbance of speech comprehension or additionally of speech);
11. Participation in another scientific or clinical study within the last 4 weeks;
12. Pregnancy
13. Breastfeeding
14. Intolerance to caffeine or coffee products
15. Participant who has abnormal heart activity from an electrocardiography (ECG) finding
16. Weight is less than 60 kg
18 Years
45 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Medical Center Goettingen
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Prof. Dr. Walter Paulus
Head of Department for Clinical Neurophysiology
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Walter Paulus
Role: PRINCIPAL_INVESTIGATOR
University Medical Center Goettingen, Goettingen
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Prof. Dr. Walter Paulus
Goettigen, Lower Saxony, Germany
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Floel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-1809. doi: 10.1016/j.clinph.2017.06.001. Epub 2017 Jun 19.
Antal A, Chaieb L, Moliadze V, Monte-Silva K, Poreisz C, Thirugnanasambandam N, Nitsche MA, Shoukier M, Ludwig H, Paulus W. Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimul. 2010 Oct;3(4):230-7. doi: 10.1016/j.brs.2009.12.003. Epub 2010 Jan 14.
Biabani M, Farrell M, Zoghi M, Egan G, Jaberzadeh S. The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation. Neurosci Lett. 2018 May 1;674:94-100. doi: 10.1016/j.neulet.2018.03.026. Epub 2018 Mar 15.
Cappelletti S, Piacentino D, Sani G, Aromatario M. Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol. 2015 Jan;13(1):71-88. doi: 10.2174/1570159X13666141210215655.
Cappelletti S, Piacentino D, Fineschi V, Frati P, Cipolloni L, Aromatario M. Caffeine-Related Deaths: Manner of Deaths and Categories at Risk. Nutrients. 2018 May 14;10(5):611. doi: 10.3390/nu10050611.
Cavaleri R, Schabrun SM, Chipchase LS. The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis. Syst Rev. 2017 Mar 6;6(1):48. doi: 10.1186/s13643-017-0440-8.
Cuypers K, Thijs H, Meesen RL. Optimization of the transcranial magnetic stimulation protocol by defining a reliable estimate for corticospinal excitability. PLoS One. 2014 Jan 24;9(1):e86380. doi: 10.1371/journal.pone.0086380. eCollection 2014.
Feurra M, Paulus W, Walsh V, Kanai R. Frequency specific modulation of human somatosensory cortex. Front Psychol. 2011 Feb 2;2:13. doi: 10.3389/fpsyg.2011.00013. eCollection 2011.
Goldsworthy MR, Hordacre B, Ridding MC. Minimum number of trials required for within- and between-session reliability of TMS measures of corticospinal excitability. Neuroscience. 2016 Apr 21;320:205-9. doi: 10.1016/j.neuroscience.2016.02.012. Epub 2016 Feb 9.
Hanajima R, Tanaka N, Tsutsumi R, Shirota Y, Shimizu T, Terao Y, Ugawa Y. Effect of caffeine on long-term potentiation-like effects induced by quadripulse transcranial magnetic stimulation. Exp Brain Res. 2019 Mar;237(3):647-651. doi: 10.1007/s00221-018-5450-9. Epub 2018 Dec 10.
Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46(2):101-23. doi: 10.1080/10408390500400009.
Karabanov A, Ziemann U, Hamada M, George MS, Quartarone A, Classen J, Massimini M, Rothwell J, Siebner HR. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimul. 2015 May-Jun;8(3):442-54. doi: 10.1016/j.brs.2015.01.404. Epub 2015 Apr 1.
Di Lazzaro V, Pellegrino G, Di Pino G, Corbetto M, Ranieri F, Brunelli N, Paolucci M, Bucossi S, Ventriglia MC, Brown P, Capone F. Val66Met BDNF gene polymorphism influences human motor cortex plasticity in acute stroke. Brain Stimul. 2015 Jan-Feb;8(1):92-6. doi: 10.1016/j.brs.2014.08.006. Epub 2014 Aug 23.
Lewis GN, Signal N, Taylor D. Reliability of lower limb motor evoked potentials in stroke and healthy populations: how many responses are needed? Clin Neurophysiol. 2014 Apr;125(4):748-754. doi: 10.1016/j.clinph.2013.07.029. Epub 2013 Oct 5.
Marquez-Ruiz J, Leal-Campanario R, Sanchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, Ruffini G, Gruart A, Delgado-Garcia JM. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6710-5. doi: 10.1073/pnas.1121147109. Epub 2012 Apr 9.
Moliadze V, Antal A, Paulus W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol. 2010 Dec 15;588(Pt 24):4891-904. doi: 10.1113/jphysiol.2010.196998.
Moliadze V, Antal A, Paulus W. Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol. 2010 Dec;121(12):2165-71. doi: 10.1016/j.clinph.2010.04.033. Epub 2010 Jun 15.
Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012 Oct;5(4):505-11. doi: 10.1016/j.brs.2011.11.004. Epub 2012 Feb 22.
Muller-Dahlhaus F, Ziemann U. Metaplasticity in human cortex. Neuroscientist. 2015 Apr;21(2):185-202. doi: 10.1177/1073858414526645. Epub 2014 Mar 11.
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000 Sep 15;527 Pt 3(Pt 3):633-9. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971 Mar;9(1):97-113. doi: 10.1016/0028-3932(71)90067-4. No abstract available.
Polania R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol. 2012 Jul 24;22(14):1314-8. doi: 10.1016/j.cub.2012.05.021. Epub 2012 Jun 7.
Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol. 2010 Jul 1;588(Pt 13):2291-304. doi: 10.1113/jphysiol.2010.190314. Epub 2010 May 17.
Robertson D, Wade D, Workman R, Woosley RL, Oates JA. Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest. 1981 Apr;67(4):1111-7. doi: 10.1172/jci110124.
Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000 Mar;123 Pt 3:572-84. doi: 10.1093/brain/123.3.572.
Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol. 2002 Sep 1;543(Pt 2):699-708. doi: 10.1113/jphysiol.2002.023317.
Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010 Nov 1;5(11):e13766. doi: 10.1371/journal.pone.0013766.
Zulkifly MFM, Merkohitaj O, Brockmoller J, Paulus W. Confounding effects of caffeine on neuroplasticity induced by transcranial alternating current stimulation and paired associative stimulation. Clin Neurophysiol. 2021 Jun;132(6):1367-1379. doi: 10.1016/j.clinph.2021.01.024. Epub 2021 Mar 10.
Zulkifly MFM, Merkohitaj O, Paulus W, Brockmoller J. The roles of caffeine and corticosteroids in modulating cortical excitability after paired associative stimulation (PAS) and transcranial alternating current stimulation (tACS) in caffeine-naive and caffeine-adapted subjects. Psychoneuroendocrinology. 2021 May;127:105201. doi: 10.1016/j.psyneuen.2021.105201. Epub 2021 Mar 15.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
33/3/19
Identifier Type: -
Identifier Source: org_study_id