A Wheelchair Propulsion Training Program

NCT ID: NCT04009187

Last Updated: 2025-03-28

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

20 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-03-27

Study Completion Date

2019-10-22

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The overall purpose of this project is to test the feasibility of a manual wheelchair propulsion program which aims to reduce the chance of development of upper limbs pain and injury.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The purpose of this project is to develop a feasible wheelchair propulsion training that can fit into an in-patient rehabilitation schedule, and determine the effectiveness of the training protocol. This project consists of a randomized control trial (RCT) for manual wheelchair users (MWUs) that examines the number of manual wheelchair propulsion repetitions required to produce change. For the RCT, we will recruit twenty individuals who use manual wheelchairs as their primary means of mobility and who do not follow the recommended clinical guidelines for propulsion. Participants will be randomized into two independent groups: motor learning repetitions overground (Training Group; n =10), and general education on recommended propulsion techniques (Education Group; n =10). Demographics, cognition, shoulder strength, participation, and wheelchair seating may only be assessed at baseline. Participants then may be assessed from the kinematics of their wheelchair performance overground and on a motorized treadmill. Participants may be tested on their wheelchair propulsion techniques in and outside of the lab, upper extremity pain at baseline, post-intervention, and three-week follow-up; participants may also be asked qualitative questions regarding the intervention experience, the experience with the equipment and the laboratory research, the monitoring setting, and the general experience with the research study.

The primary research question is that will repetition of proper propulsion technique practiced overground result in improved manual wheelchair propulsion biomechanics?

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Spinal Cord Injuries Multiple Sclerosis Amputation Spina Bifida

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Training group

Training group will first receive 30 minutes of education about biomechanically efficient propulsion techniques. They will be tested on this knowledge to make sure participants understand the material. The participant then will be asked to come into the lab for 6 sessions of training, two times per week for three weeks. The training is an hour of the proper wheelchair propulsion techniques broken into 5 parts, 7 minutes each with breaks. Based on the motor learning principles, we gradually increase the components of the training by focusing either hand reaching toward the back of the wheel or hands reaching down toward the axle.

Group Type ACTIVE_COMPARATOR

In-person wheelchair propulsion training program

Intervention Type BEHAVIORAL

The wheelchair propulsion (WP) intervention is based on our previous pilot work and the best available evidence on WP training. The CPGs recommend minimizing the force and frequency of pushes while using long strokes during propulsion. Each training session will include massed practice with repetitions overground. Each session is organized to limit the number of variables (i.e., long push strokes and dropping the hands down below axle) presented to the participant at one time. Propulsion Set A will focus on using longer push strokes. Propulsion Set B will focus on dropping the hand down toward the axle. Propulsion Set C will focus on both A and B.

30-minute education session

Intervention Type BEHAVIORAL

Both groups will receive a 30-minute education session regarding the CPGs. This education session will follow the instructions provided in Rice and colleagues. (L. A. Rice et al., 2014). It consists of the importance of practicing biomechanical efficient propulsion. The material lists out the consequences and the impact of upper limb pain and injury. It provides a detailed step by step on how to propel properly. They will view the video that shows the biomechanics of efficient and inefficient propulsion.

Control group

Control group will first receive 30 minutes of education about the biomechanically efficient propulsion. They will be tested on this knowledge to make sure participants understand the material. No further training will be implemented with this group.

Group Type ACTIVE_COMPARATOR

30-minute education session

Intervention Type BEHAVIORAL

Both groups will receive a 30-minute education session regarding the CPGs. This education session will follow the instructions provided in Rice and colleagues. (L. A. Rice et al., 2014). It consists of the importance of practicing biomechanical efficient propulsion. The material lists out the consequences and the impact of upper limb pain and injury. It provides a detailed step by step on how to propel properly. They will view the video that shows the biomechanics of efficient and inefficient propulsion.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

In-person wheelchair propulsion training program

The wheelchair propulsion (WP) intervention is based on our previous pilot work and the best available evidence on WP training. The CPGs recommend minimizing the force and frequency of pushes while using long strokes during propulsion. Each training session will include massed practice with repetitions overground. Each session is organized to limit the number of variables (i.e., long push strokes and dropping the hands down below axle) presented to the participant at one time. Propulsion Set A will focus on using longer push strokes. Propulsion Set B will focus on dropping the hand down toward the axle. Propulsion Set C will focus on both A and B.

Intervention Type BEHAVIORAL

30-minute education session

Both groups will receive a 30-minute education session regarding the CPGs. This education session will follow the instructions provided in Rice and colleagues. (L. A. Rice et al., 2014). It consists of the importance of practicing biomechanical efficient propulsion. The material lists out the consequences and the impact of upper limb pain and injury. It provides a detailed step by step on how to propel properly. They will view the video that shows the biomechanics of efficient and inefficient propulsion.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* 18-65 years of age
* have a mobility limitation requiring the use of a manual wheelchair (MWC)
* be able to self-propel a MWC bilaterally with their upper extremities
* plan to use a MWC for at least 75% of their activities throughout the day
* live in the community
* understand English at a sixth-grade level or higher
* can follow multi-step instructions
* able to provide informed consent independently
* able to tolerate propelling their wheelchair independently for 10m
* be willing to participate in three assessments and six training sessions at the Enabling Mobility in the Community Laboratory (EMC Lab).

Exclusion Criteria

* maneuver their MWC with their lower extremities or with only one upper extremity
* display the proper wheelchair propulsion techniques during the screening process
* MWC position inhibits them from following the CPGs
* bilateral incoordination
* upper extremity strength inequalities resulting in a 12-inch deviation from a marked pathway
* surgeries compromising the integrity of the upper extremities
* cardiovascular complications within the past year
* upper extremity or overall bodily pain is rated 8/10 or higher per the Wong-Baker FACES Numeric Pain Scale (FACES)
* currently receiving medical treatment for an acute upper extremity injury
* have a Stage IV pressure injury or are currently hospitalized
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Washington University School of Medicine

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Kerri Morgan

Assistant Professor of Occupational Therapy and Neurology

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Kerri Morgan, PhD

Role: PRINCIPAL_INVESTIGATOR

Washington University School of Medicine

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Washington University School of Medicine

St Louis, Missouri, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Boninger ML, Souza AL, Cooper RA, Fitzgerald SG, Koontz AM, Fay BT. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Arch Phys Med Rehabil. 2002 May;83(5):718-23. doi: 10.1053/apmr.2002.32455.

Reference Type BACKGROUND
PMID: 11994814 (View on PubMed)

Morgan KA, Tucker SM, Klaesner JW, Engsberg JR. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study. J Spinal Cord Med. 2017 May;40(3):304-315. doi: 10.1080/10790268.2015.1120408. Epub 2015 Dec 16.

Reference Type BACKGROUND
PMID: 26674751 (View on PubMed)

Will, K., Engsberg, J. R., Foreman, M., Klaesner, J., Birkenmeier, R., & Morgan, K. A. (2015). Repetition based training for efficient propulsion in new manual wheelchair users. Journal of Physical Medicine, Rehabilitation & Disabilities, 1(001), 1-9.

Reference Type BACKGROUND

Morgan KA, Engsberg JR, Gray DB. Important wheelchair skills for new manual wheelchair users: health care professional and wheelchair user perspectives. Disabil Rehabil Assist Technol. 2017 Jan;12(1):28-38. doi: 10.3109/17483107.2015.1063015. Epub 2015 Jul 3.

Reference Type BACKGROUND
PMID: 26138222 (View on PubMed)

Paralyzed Veterans of America Consortium for Spinal Cord Medicine. Preservation of upper limb function following spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med. 2005;28(5):434-70. doi: 10.1080/10790268.2005.11753844. No abstract available.

Reference Type BACKGROUND
PMID: 16869091 (View on PubMed)

Sawatzky B, DiGiovine C, Berner T, Roesler T, Katte L. The need for updated clinical practice guidelines for preservation of upper extremities in manual wheelchair users: a position paper. Am J Phys Med Rehabil. 2015 Apr;94(4):313-24. doi: 10.1097/PHM.0000000000000203.

Reference Type BACKGROUND
PMID: 25299526 (View on PubMed)

Askari S, Kirby RL, Parker K, Thompson K, O'Neill J. Wheelchair propulsion test: development and measurement properties of a new test for manual wheelchair users. Arch Phys Med Rehabil. 2013 Sep;94(9):1690-8. doi: 10.1016/j.apmr.2013.03.002. Epub 2013 Mar 14.

Reference Type BACKGROUND
PMID: 23499781 (View on PubMed)

MacPhee AH, Kirby RL, Coolen AL, Smith C, MacLeod DA, Dupuis DJ. Wheelchair skills training program: A randomized clinical trial of wheelchair users undergoing initial rehabilitation. Arch Phys Med Rehabil. 2004 Jan;85(1):41-50. doi: 10.1016/s0003-9993(03)00364-2.

Reference Type BACKGROUND
PMID: 14970966 (View on PubMed)

Axelson, P., Chesney, D. Y., Minkel, J., & Perr, A. (1996). The manual wheelchair training guide. Santa Cruz, CA: Pax Press,1996.

Reference Type BACKGROUND

Kirby RL, Dupuis DJ, Macphee AH, Coolen AL, Smith C, Best KL, Newton AM, Mountain AD, Macleod DA, Bonaparte JP. The wheelchair skills test (version 2.4): measurement properties. Arch Phys Med Rehabil. 2004 May;85(5):794-804. doi: 10.1016/j.apmr.2003.07.007.

Reference Type BACKGROUND
PMID: 15129405 (View on PubMed)

Rice IM, Pohlig RT, Gallagher JD, Boninger ML. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback. Arch Phys Med Rehabil. 2013 Feb;94(2):256-63. doi: 10.1016/j.apmr.2012.09.014. Epub 2012 Sep 26.

Reference Type BACKGROUND
PMID: 23022092 (View on PubMed)

DeGroot KK, Hollingsworth HH, Morgan KA, Morris CL, Gray DB. The influence of verbal training and visual feedback on manual wheelchair propulsion. Disabil Rehabil Assist Technol. 2009 Mar;4(2):86-94. doi: 10.1080/17483100802613685.

Reference Type BACKGROUND
PMID: 19253097 (View on PubMed)

Rice LA, Smith I, Kelleher AR, Greenwald K, Boninger ML. Impact of a wheelchair education protocol based on practice guidelines for preservation of upper-limb function: a randomized trial. Arch Phys Med Rehabil. 2014 Jan;95(1):10-19.e11. doi: 10.1016/j.apmr.2013.06.028. Epub 2013 Jul 13.

Reference Type BACKGROUND
PMID: 23856151 (View on PubMed)

Klaesner J, Morgan KA, Gray DB. The development of an instrumented wheelchair propulsion testing and training device. Assist Technol. 2014 Spring;26(1):24-32. doi: 10.1080/10400435.2013.792020.

Reference Type BACKGROUND
PMID: 24800451 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

201711056

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Biofeedback for Wheelchair Users
NCT02700178 COMPLETED NA
Spinal Cord Stimulation and Training
NCT05472584 RECRUITING NA