Spinal Cord Stimulation and Autonomic Response in People With SCI.
NCT ID: NCT03924388
Last Updated: 2019-12-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
46 participants
INTERVENTIONAL
2020-02-01
2022-03-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
AIMS AND HYPOTHESES:
Aim 1. To examine the effects of short-term (one session) transcutaneous spinal cord stimulation on the frequency and severity of episodes of orthostatic hypotension/autonomic dysfunction, and bladder, bowel, and sexual functions. These effects will be compared at two sites of stimulation.
Hypothesis 1.1: Short-term transcutaneous mid-thoracic cord stimulation will mitigate the severity and frequency of orthostatic hypotension/autonomic dysfunction.
Hypothesis 1.2: Lumbosacral transcutaneous spinal cord stimulation will improve bladder, bowel, and sexual functions.
Aim 2. To examine the effects of long-term (one month) transcutaneous spinal cord stimulation on the severity and frequency of orthostatic hypotension/autonomic dysfunction.
Hypothesis 2.1: Long-term stimulation of the mid-thoracic cord will result in sustained improvements in mitigated severity and frequency of orthostatic hypotension/autonomic dysfunction that is not dependent on active stimulation.
Hypothesis 2.2: Long-term lumbosacral transcutaneous spinal cord stimulation will result in sustained improvements in bowel, bladder, and sexual function that is not dependent on active stimulation.
Aim 3: To examine the effects of short-term (one session) epidural spinal cord stimulation on the severity and frequency of orthostatic hypotension/autonomic dysfunction, and bladder, bowel, and sexual functions.
Hypothesis 3.1: Epidural spinal cord stimulation will mitigate the severity and frequency of orthostatic hypotension/autonomic dysfunction and improve bladder, bowel, and sexual function.
Hypothesis 3.3: There is no significant difference between immediate effects of lumbosacral transcutaneous spinal cord stimulation and epidural spinal cord stimulation on bladder, bowel, and sexual function.
For aim 1, 14 participants with spinal cord injury and no implanted electrodes on the spinal cord will be recruited. Participants will randomly receive one-hour stimulation under each of the two stimulation conditions in a crossover manner: Mid-thoracic and Lumbosacral. For aim 2, 28 individuals with spinal cord injury and no implanted electrode will be pseudo-randomized (1:1) to one of two stimulation sites. Participants will receive one-hour stimulation, five sessions per week for four weeks. Cardiovascular and neurological outcomes will be measured before the first stimulation session and after the last stimulation session. For aim 3, 4 participants with spinal cord injury with implanted electrodes on the spinal cord will be recruited to study the immediate effects of invasive epidural spinal cord stimulation.
All outcomes will be measured in two positions: a) Supine, b) \~ 70° upright tilt-test. Additionally, bowel, bladder, and sexual functions in project 2 will be assessed weekly.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Project 3: This is a multi-site open-label case study exploring the effects of invasive epidural spinal cord stimulation on a small number of individuals with spinal cord injury who underwent epidural implantation in Canada or abroad.
Duration of study participation for each participant Eligible participants will be enrolled into the study. Four visits (1 screening session and 3 assessment + stimulation sessions) for project 1 and 21 visits during a month (1 "screening" session, 5 "assessment+ stimulation", and 15 "stimulation only" sessions) for Project 2 will be conducted. Eligible participants who are involved in Project 3 will make two separated visits to our laboratory: one screening session and one "assessment + stimulation" session.
Briefly, the study involves the following:
Project 1, 2, and 3, Visit 1: Screening Phase After providing informed consent, participants will be assigned a unique study number and will be then be assessed for study eligibility. Baseline assessments at this phase include a tilt-up test (to confirm orthostatic hypotension), administration of the Montreal Cognitive Assessment Scale, a take-home bladder and bowel diary (to monitor bladder incontinence and frequency of bowel movements), as well as a take-home Bristol Stool Scale (to monitor constipation). Prior to leaving the site, participants will then be equipped with a 24-hour ambulatory blood pressure monitor in order to establish a baseline parameter of severity and frequency of spontaneous episodes of autonomic dysfunction and orthostatic hypotension.
Project 1, Visits 2- 4 Participants that meet preliminary eligibility requirements will undergo baseline measurements including sympathetic skin responses, cerebral blood flow measurement, cardiovascular monitoring and blood tests (to measure catecholamine level in serum before, during, immediately after tilt up test).
Participants will complete questionnaires, which will establish baseline parameters for self-reported assessments of severity and frequency of autonomic dysfunction, bladder incontinence, and neurogenic bowel Score.
In this randomized crossover study, participants will randomly receive one session of mid-thoracic non-invasive transcutaneous spinal cord stimulation, lumbosacral non-invasive transcutaneous spinal cord stimulation or field block anesthesia. Cardiovascular and neurological outcomes will be measured immediately after stimulation. The stimulation sessions will be separated by at least 72 hours to avoid any interference carry-over effects at each stimulation site. non-invasive transcutaneous spinal cord stimulation is approved under protocols: UBC-Protocol 06 24 14 ca; UCLA, CA - IRB# 14-000158-CR- 00002.
Project 2, Visit 1, Screening Phase After providing the informed consent form for this part of the study (long-term application of Non-invasive Transcutaneous Spinal Cord Stimulation), participants will undergo baseline assessment (explained above) to record severity and frequency of spontaneous episodes of autonomic dysfunction and orthostatic hypotension. participants will be asked to participate in stimulation sessions for four consecutive weeks, with five one-hour sessions of stimulation per week.
Project 2, Visit 2: Baseline measurement and first stimulation session Participants will return 72 hours after the screening phase (explained above). All neurological and cardiovascular outcomes will be measured before applying the first stimulation session. Outcomes will be measured in two positions: a) Supine, b) \~ 70° upright tilt-test, executed in a random order. Participants will then be pseudo-randomized (1:1) to one of the stimulation conditions: 1) Mid-thoracic or 2) Lumbosacral stimulation to receive 60-minute stimulation. Total anticipated time is 3-4 hours including set-up and stimulation.
Project 2, Visits 3 to 20: Stimulation sessions Participants will return to the clinic 24 hours after the first stimulation. All stimulation parameters are identical. Total anticipated time is 2 hours including set-up and one-hour of stimulation. No cardiovascular or neurological outcome will be measured during visits 3 to 20. At the end of 6th, 11th, 16th, and 21st stimulation sessions, neurological bowel Score and the Montreal Cognitive Assessment will be performed. Participants will be sent home with bladder, bowel, and sexual function assessment questionnaires.
All visits will include one tilt-up test with no stimulation, and one with the specific stimulation for that condition, executed in a random order.
Project 2, Visit 21: Last stimulation session and post-intervention outcome measurement In the last visit, participants will receive the last stimulation session, and the cardiovascular and neurological outcome will be measured before and immediately after stimulation. Cardiovascular outcomes measured before and after last stimulation session in two positions: a) Supine and b) \~ 70° upright tilt-test, executed in a random order.
Project 3, Visit 2 For invasive epidural spinal cord stimulation, only individuals who have previously been implanted with an epidural stimulator will be invited to participate. Participants will undergo one "assessment + stimulation" session.The the instructions which are approved under protocols UBC-Protocol 06 24 14 ca; Louisville, KY - IRB Number: 14.0738; Minnesota, MN - IRB Number: 4697-B, USA Veteran's Affairs: IRB Number: 16-4115 will be followed. Outcomes will be measured before and immediately after stimulation. Total anticipated time is 3-4 hours including set-up and all assessments which can be completed in one day.
PROCEDURES AND ASSESSMENTS
Project 1, 2, and 3, Visit 1: Screening Phase
A screening assessment to determine study eligibility will be performed during this visit. After the participant has provided informed consent, he/she will be assigned a unique study number and the following information will be collected:
* Inclusion/Exclusion Criteria
* Medical History
* Demographic information
* Weight and height
* Concomitant Medication and Procedures
* Previous allergies and adverse events to medications
The following procedures will be conducted:
* Self-reported American Spinal Injury Association Impairment Scale
* Autonomic assessment of baseline blood pressure and heart rate and orthostatic instability (i.e., Tilt up test)
* Pregnancy test by a Pregnancy Test Kit (Women of Child Bearing Potential)
* Administration of the Montreal Cognitive Assessment.
The following take home material will be provided:
* Bladder and Bowel Diary (to collect three days of information on incontinence and frequency)
* Bristol Stool Scale (to collect 3 days of information on stool consistency) Project 1, Visits 2 to 4, Project 2, Visits 2 \& 21, and Project 3, Visit 2
The following information will be collected:
* Confirmation of Eligibility
* Completed Bladder and Bowel Diary provided at Visit 1
* Completed Bristol Stool Scale provided at Visit 1
The following questionnaires will be administered:
* Self-reported assessments of severity and frequency of autonomic dysfunction
* Adverse Events following electrical stimulation
* Bladder incontinence
* Neurogenic bowel Score
* Female Sexual Distress Scale and Female Sexual Function Index, females only
* International Index of Erectile Function-15, males only
The following procedures will be conducted:
* Blood tests to measure Catecholamine level in serum before, during, immediately after tilt up test.
* 24-hour ambulatory blood pressure monitor
* Sympathetic skin responses Test
* Continuous beat-to-beat measurement of Systolic Blood Pressure, Diastolic Blood Pressure, and Mean Blood Pressure from right finger
* Every minute blood pressure from left Brachial artery Project 2, Visits 6, 11, and 16
* Completed Bladder and Bowel Diary provided at Visit 5, 11, and 15
* Completed Bristol Stool Scale provided at Visit 5, 11, and 15
* Self-reported assessments of severity and frequency of autonomic dysfunction
* Bladder incontinence
* Neurogenic bowel Score
* Female Sexual Distress Scale and Female Sexual Function Index, females only
* International Index of Erectile Function-15, males only
* Adverse Events questionnaire following electrical stimulation For all visits other than the screening phase, participants will be asked to abstain from drugs that directly influence their blood pressure, (e.g., midodrine, fludrocortisone, nifedipine).
Patients will also be asked to arrive having not exercised vigorously for the past 24 hours and to have abstained from caffeine, alcohol, cannabis, and withhold medications for the previous 12 hours and to consume a light breakfast. Upon arrival to the laboratory, participants were asked to empty their bladders to minimize the influence of reflex sympathetic activation on peripheral vascular tone.
Non-invasive Transcutaneous Spinal Cord Stimulation The non-invasive transcutaneous spinal cord stimulation will be performed within the scope of the previously approved ethics by UCLA (45). A stimulator will be utilized for one hour of stimulation. Transcutaneous stimulation will be applied using a self-adhesive cathode electrode with a diameter of 30 mm placed on the skin between the TVII and TVIII spinous processes (approximately corresponding to the T8 spinal segment) at the midline over the vertebral column. For lumbosacral non-invasive transcutaneous spinal cord stimulation, the cathode will be placed on the skin between the LI and LII spinous processes (approximately corresponding to the L2/3 to S4/5) at the midline over the vertebral column. Two self-adhesive anode electrodes with a size of 5 × 9 cm will be symmetrically located on the skin over the iliac crests. Based on previous works it is expect that stimulation will be delivered at 30 Hz as monophasic, 1-ms pulses, to provide afferent input to the region of the spinal cord where sympathetic preganglionic neuron cell bodies are located (24). The current will be increased from 10 mA until blood pressure is normalized. Skin temperature will be monitored in the vicinity of the stimulating electrodes with skin temperature probes.
In invasive epidural spinal cord stimulation, the use of use of stimulator is associated with some risks, including lead migration causing changes in stimulation or reduced functional benefit, lead breakage, over or under stimulation, battery failure, persistent pain at stimulation site, unpleasant sensation or motor disturbance, spinal cord pressure at stimulation site, In non-invasive transcutaneous spinal cord stimulation, again, no adverse event is expected as only parameters and electrodes approved by Health Canada will be utilized in this study. Also, skin temperature for potential irritation will be monitored frequently. Stimulation could elicit autonomic dysfunction, however so far autonomic dysfunction has not been directly observed in the published non-invasive transcutaneous spinal cord stimulation studies. Furthermore, cessation in stimulation immediately reduces blood pressure, and blood pressure closely will be measured during procedures. In case of adverse events, the participant's primary physician would be notified as needed.
Subjects who choose to participate in this trial will be required to give a significant commitment to this study without the guarantee of any benefit. The risks associated with this study are warranted in humans because of the potential direct benefit of the study participants and the spinal cord injury community.
Monitoring during experiment Participants will be continuously monitored for any signs of risks or discomfort. As mentioned, cardiovascular signals such as blood pressure and heart rate will be measured frequently. For non-invasive transcutaneous spinal cord stimulation, skin temperature will be additionally measured. If adverse events occur the testing session will be immediately discontinued. If any complications arise, the experiment will be immediately stopped. In addition, the participant's primary care provider will be notified as necessary if serious adverse events occur.
Data from an autonomic assessment of individuals included in ongoing clinical trials at Foothills Medical Centre (Calgary) and Vancouver General Hospital (Vancouver) with invasive epidural spinal cord stimulation or/and non-invasive transcutaneous spinal cord stimulation after spinal cord injury will be analyzed at Phillips Lab at University of Calgary or within ICORD (UBC). Furthermore, individuals who underwent implantation surgery, either at the above-mentioned study centers or elsewhere, (i.e. as part of a clinical trial or as treatment option), will be assessed and analyzed by Dr. Phillips Lab research team or at ICORD.
Finally, Dr. Phillips lab research team will examine individuals (healthy or following spinal cord injury) using transcutaneous stimulation. No invasive procedure will be carried out. All research protocols for the above-mentioned assessments have been previously approved by the respective research ethics boards at the University of Louisville, UCLA, the University of Minnesota, and UBC: UBC-Protocol 06 24 14 ca; Louisville, KY - IRB Number: 14.0738; Minnesota, MN - IRB Number: 4697-B, USA Veteran's Affairs: IRB Number: 16-4115.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
Project 3: This is a multi-site open-label case study exploring the effects of invasive epidural spinal cord stimulation on small number of individuals with SCI who underwent epidural implantation in Canada or abroad.
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Short-term transcutaneous spinal cord stimulation
In Project 1, we will measure the immediate effects of one-hour mid-thoracic and/or lumbosacral transcutaneous stimulation on autonomic function.
In mid-thoracic stimulation, the self-adhesive cathode electrode with a diameter of 30 mm will be placed on the skin between the TVII and TVIII spinous processes (approximately corresponding to the T8 spinal segment) at the midline over the vertebral column. For lumbosacral stimulation, the cathode will be placed on the skin between the LI and LII spinous processes (approximately corresponding to the L2/3 to S4/5) at the midline over the vertebral column. Two self-adhesive anode electrodes with a size of 5 × 9 cm will be symmetrically located on the skin over the iliac crests. Before and immediately after the stimulation, the outcomes will be measured in 2 positions, supine and \~ 70° upright (adjusted by tilt-up table).
Trnascutaneous electrical spinal cord stimulation.
The measurements will be obtained in 2 positions of supine and \~ 70° upright adjusted by the tilt-up table.
Long-term transcutaneous spinal cord stimulation
In Project 2, we will measure the effects of one-month stimulation (five one-hour stimulation sessions per week) of mid-thoracic and lumbosacral transcutaneous spinal cord stimulation on autonomic function.
The electrode placement and duration of stimulation will be identical to Project 1. The outcomes at each time point will be measured in two positions, supine and \~ 70° upright (adjusted by tilt-up table). The cardiovascular outcomes will be measured before, after the last stimulation session. Bladder and bowel function will be assessed weekly.
Trnascutaneous electrical spinal cord stimulation.
The measurements will be obtained in 2 positions of supine and \~ 70° upright adjusted by the tilt-up table.
Project 3
For Project 3, only individuals who have previously been implanted with an epidural stimulator will be invited to participate. They will have only one stimulation session. We will not offer participants to undergo implantation surgery.
Epidural spinal cord stimulation
The measurements will be obtained in 2 positions of supine and \~ 70° upright adjusted by the tilt-up table.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Epidural spinal cord stimulation
The measurements will be obtained in 2 positions of supine and \~ 70° upright adjusted by the tilt-up table.
Trnascutaneous electrical spinal cord stimulation.
The measurements will be obtained in 2 positions of supine and \~ 70° upright adjusted by the tilt-up table.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* The volunteer should have \>1-year injury, at least 6 months from any spinal surgery
* Underwent electrode implantation surgery before
* Documented presence of cardiovascular dysfunction including the presence of persistent resting blood pressure and/or symptoms of AD/OH.
* Greater than or equal to antigravity strength in deltoids and biceps bilaterally.
* Participants must have documented 3 days of bladder and bowel history prior to their baseline visit.
* Willing to understand and complete study-related questionnaires (must be able to understand and speak English or have access to an appropriate interpreter as judged by the investigator).
* No painful musculoskeletal dysfunction, unhealed fracture, pressure sore, or active infection that may interfere with testing activities.
* Stable management of spinal cord-related clinical issue (spasticity management).
* Women of childbearing potential must not be intending to become pregnant, currently pregnant, or lactating.
* Sexually active males with female partners of childbearing potential must agree to effective contraception during th eperiod of the tril nad for at least 28 days after completion of treatment.
* Must provide informed consent.
Exclusion Criteria
* Recent treatment with OnabotulinumtoxinA into the detrusor muscle (within 9 months of the baseline visit).
* Ventilator dependent
* Clinically significant depression or ongoing drug abuse
* Use of any medication or treatment that in the opinion of the investigator indicates that it is not the best interest of participant to participate in this study
* Indwelling baclofen pump
* Any implanted metal in the trunk or spinal cord under the sites of application of electrodes (between anode and cathode) for those who are allocated to receive NTSCS.
* Severe anemia (Hgb\<8 g/dl) or hypovolemia.
* Participant is a member of the investigational team or his /her immediate family.
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
International Collaboration on Repair Discoveries
OTHER
University of Calgary
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Aaron Phillips
Assistant Professor, Physiology & Pharmacology, Cardiac Sciences and Clinical Neurosciences
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Calgary
Calgary, Alberta, Canada
University of British Columbia
Vancouver, British Columbia, Canada
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Aaron Phillips, PhD
Role: primary
Andrei Krassioukov, MD, PhD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Sheel AW, Krassioukov AV, Inglis JT, Elliott SL. Autonomic dysreflexia during sperm retrieval in spinal cord injury: influence of lesion level and sildenafil citrate. J Appl Physiol (1985). 2005 Jul;99(1):53-8. doi: 10.1152/japplphysiol.00154.2005. Epub 2005 Mar 24.
Solinsky R, Bunnell AE, Linsenmeyer TA, Svircev JN, Engle A, Burns SP. Pharmacodynamics and effectiveness of topical nitroglycerin at lowering blood pressure during autonomic dysreflexia. Spinal Cord. 2017 Oct;55(10):911-914. doi: 10.1038/sc.2017.58. Epub 2017 Jun 6.
Phillips AA, Elliott SL, Zheng MM, Krassioukov AV. Selective alpha adrenergic antagonist reduces severity of transient hypertension during sexual stimulation after spinal cord injury. J Neurotrauma. 2015 Mar 15;32(6):392-6. doi: 10.1089/neu.2014.3590. Epub 2014 Dec 5.
Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. Neurology. 1996 May;46(5):1470. doi: 10.1212/wnl.46.5.1470. No abstract available.
Eigenbrodt ML, Rose KM, Couper DJ, Arnett DK, Smith R, Jones D. Orthostatic hypotension as a risk factor for stroke: the atherosclerosis risk in communities (ARIC) study, 1987-1996. Stroke. 2000 Oct;31(10):2307-13. doi: 10.1161/01.str.31.10.2307.
Squair JW, Phillips AA, Harmon M, Krassioukov AV. Emergency management of autonomic dysreflexia with neurologic complications. CMAJ. 2016 Oct 18;188(15):1100-1103. doi: 10.1503/cmaj.151311. Epub 2016 May 24. No abstract available.
Phillips AA, Ainslie PN, Warburton DE, Krassioukov AV. Cerebral Blood Flow Responses to Autonomic Dysreflexia in Humans with Spinal Cord Injury. J Neurotrauma. 2016 Feb 1;33(3):315-8. doi: 10.1089/neu.2015.3871. Epub 2016 Jan 7.
Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab. 2014 May;34(5):794-801. doi: 10.1038/jcbfm.2014.3. Epub 2014 Jan 29.
Illman A, Stiller K, Williams M. The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord. 2000 Dec;38(12):741-7. doi: 10.1038/sj.sc.3101089.
Freeman R, Abuzinadah AR, Gibbons C, Jones P, Miglis MG, Sinn DI. Orthostatic Hypotension: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018 Sep 11;72(11):1294-1309. doi: 10.1016/j.jacc.2018.05.079.
Mathias CJ. Orthostatic hypotension and paroxysmal hypertension in humans with high spinal cord injury. Prog Brain Res. 2006;152:231-43. doi: 10.1016/S0079-6123(05)52015-6.
Sclater A, Alagiakrishnan K. Orthostatic hypotension. A primary care primer for assessment and treatment. Geriatrics. 2004 Aug;59(8):22-7.
Bisharat N, Paz E, Klimov A, Friedberg N, Elias M. Cerebral syncope in a patient with spinal cord injury. Pacing Clin Electrophysiol. 2002 Mar;25(3):372-3. doi: 10.1046/j.1460-9592.2002.00372.x.
Currie KD, Krassioukov AV. A walking disaster: a case of incomplete spinal cord injury with symptomatic orthostatic hypotension. Clin Auton Res. 2015 Oct;25(5):335-7. doi: 10.1007/s10286-015-0309-7. Epub 2015 Aug 12.
Claydon VE, Krassioukov AV. Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma. 2006 Dec;23(12):1713-25. doi: 10.1089/neu.2006.23.1713.
Sidorov EV, Townson AF, Dvorak MF, Kwon BK, Steeves J, Krassioukov A. Orthostatic hypotension in the first month following acute spinal cord injury. Spinal Cord. 2008 Jan;46(1):65-9. doi: 10.1038/sj.sc.3102064. Epub 2007 Apr 10.
Carlozzi NE, Fyffe D, Morin KG, Byrne R, Tulsky DS, Victorson D, Lai JS, Wecht JM. Impact of blood pressure dysregulation on health-related quality of life in persons with spinal cord injury: development of a conceptual model. Arch Phys Med Rehabil. 2013 Sep;94(9):1721-30. doi: 10.1016/j.apmr.2013.02.024. Epub 2013 Mar 14.
West CR, Krassioukov AV. Autonomic cardiovascular control and sports classification in Paralympic athletes with spinal cord injury. Disabil Rehabil. 2017 Jan;39(2):127-134. doi: 10.3109/09638288.2015.1118161. Epub 2016 Jan 5.
Phillips AA, Squair JW, Krassioukov AV. Paralympic Medicine: The Road to Rio. J Neurotrauma. 2017 Jun 1;34(11):2001-2005. doi: 10.1089/neu.2016.4715. Epub 2017 Jan 24.
Harris P. Self-induced autonomic dysreflexia ('boosting') practised by some tetraplegic athletes to enhance their athletic performance. Paraplegia. 1994 May;32(5):289-91. doi: 10.1038/sc.1994.50. No abstract available.
Gee CM, West CR, Krassioukov AV. Boosting in Elite Athletes with Spinal Cord Injury: A Critical Review of Physiology and Testing Procedures. Sports Med. 2015 Aug;45(8):1133-42. doi: 10.1007/s40279-015-0340-9.
Wecht JM, Rosado-Rivera D, Handrakis JP, Radulovic M, Bauman WA. Effects of midodrine hydrochloride on blood pressure and cerebral blood flow during orthostasis in persons with chronic tetraplegia. Arch Phys Med Rehabil. 2010 Sep;91(9):1429-35. doi: 10.1016/j.apmr.2010.06.017.
Wu JC, Chen YC, Liu L, Chen TJ, Huang WC, Cheng H, Tung-Ping S. Increased risk of stroke after spinal cord injury: a nationwide 4-year follow-up cohort study. Neurology. 2012 Apr 3;78(14):1051-7. doi: 10.1212/WNL.0b013e31824e8eaa. Epub 2012 Feb 29.
Bell EJ, Agarwal SK, Cushman M, Heckbert SR, Lutsey PL, Folsom AR. Orthostatic Hypotension and Risk of Venous Thromboembolism in 2 Cohort Studies. Am J Hypertens. 2016 May;29(5):634-40. doi: 10.1093/ajh/hpv151. Epub 2015 Aug 25.
Agarwal SK, Alonso A, Whelton SP, Soliman EZ, Rose KM, Chamberlain AM, Simpson RJ Jr, Coresh J, Heiss G. Orthostatic change in blood pressure and incidence of atrial fibrillation: results from a bi-ethnic population based study. PLoS One. 2013 Nov 11;8(11):e79030. doi: 10.1371/journal.pone.0079030. eCollection 2013.
Squair JW, DeVeau KM, Harman KA, Poormasjedi-Meibod MS, Hayes B, Liu J, Magnuson DSK, Krassioukov AV, West CR. Spinal Cord Injury Causes Systolic Dysfunction and Cardiomyocyte Atrophy. J Neurotrauma. 2018 Feb 1;35(3):424-434. doi: 10.1089/neu.2017.4984. Epub 2017 Oct 13.
Woodbury MG, Hayes KC, Askes HK. Intermittent catheterization practices following spinal cord injury: a national survey. Can J Urol. 2008 Jun;15(3):4065-71.
Liu N, Fougere R, Zhou MW, Nigro MK, Krassioukov AV. Autonomic dysreflexia severity during urodynamics and cystoscopy in individuals with spinal cord injury. Spinal Cord. 2013 Nov;51(11):863-7. doi: 10.1038/sc.2013.113. Epub 2013 Sep 24.
Teasell RW, Arnold JM, Krassioukov A, Delaney GA. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. Arch Phys Med Rehabil. 2000 Apr;81(4):506-16. doi: 10.1053/mr.2000.3848.
Ho CP, Krassioukov AV. Autonomic dysreflexia and myocardial ischemia. Spinal Cord. 2010 Sep;48(9):714-5. doi: 10.1038/sc.2010.2. Epub 2010 Feb 2.
Eltorai I, Kim R, Vulpe M, Kasravi H, Ho W. Fatal cerebral hemorrhage due to autonomic dysreflexia in a tetraplegic patient: case report and review. Paraplegia. 1992 May;30(5):355-60. doi: 10.1038/sc.1992.82.
Wan D, Krassioukov AV. Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. J Spinal Cord Med. 2014 Jan;37(1):2-10. doi: 10.1179/2045772313Y.0000000098. Epub 2013 Nov 26.
Pires PW, Dams Ramos CM, Matin N, Dorrance AM. The effects of hypertension on the cerebral circulation. Am J Physiol Heart Circ Physiol. 2013 Jun 15;304(12):H1598-614. doi: 10.1152/ajpheart.00490.2012. Epub 2013 Apr 12.
Zheng MM, Phillips AA, Elliott SL, Krassioukov AV. Prazosin: a potential new management tool for iatrogenic autonomic dysreflexia in individuals with spinal cord injury? Neural Regen Res. 2015 Apr;10(4):557-8. doi: 10.4103/1673-5374.155422. No abstract available.
Krassioukov A, Warburton DE, Teasell R, Eng JJ; Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009 Apr;90(4):682-95. doi: 10.1016/j.apmr.2008.10.017.
Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 2006 Jun;44(6):341-51. doi: 10.1038/sj.sc.3101855. Epub 2005 Nov 22.
Krassioukov A, Eng JJ, Warburton DE, Teasell R; Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch Phys Med Rehabil. 2009 May;90(5):876-85. doi: 10.1016/j.apmr.2009.01.009.
Hofstoetter US, Freundl B, Binder H, Minassian K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS One. 2018 Jan 30;13(1):e0192013. doi: 10.1371/journal.pone.0192013. eCollection 2018.
West CR, Phillips AA, Squair JW, Williams AM, Walter M, Lam T, Krassioukov AV. Association of Epidural Stimulation With Cardiovascular Function in an Individual With Spinal Cord Injury. JAMA Neurol. 2018 May 1;75(5):630-632. doi: 10.1001/jamaneurol.2017.5055.
Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, Ovechkin AV, Krassioukov A, Harkema SJ. Epidural Spinal Cord Stimulation of Lumbosacral Networks Modulates Arterial Blood Pressure in Individuals With Spinal Cord Injury-Induced Cardiovascular Deficits. Front Physiol. 2018 May 18;9:565. doi: 10.3389/fphys.2018.00565. eCollection 2018.
Phillips AA, Squair JW, Sayenko DG, Edgerton VR, Gerasimenko Y, Krassioukov AV. An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. J Neurotrauma. 2018 Feb 1;35(3):446-451. doi: 10.1089/neu.2017.5082. Epub 2017 Nov 21.
Wecht JM, Bauman WA. Implication of altered autonomic control for orthostatic tolerance in SCI. Auton Neurosci. 2018 Jan;209:51-58. doi: 10.1016/j.autneu.2017.04.004. Epub 2017 May 3.
Biering-Sorensen F, Craggs M, Kennelly M, Schick E, Wyndaele JJ. International lower urinary tract function basic spinal cord injury data set. Spinal Cord. 2008 May;46(5):325-30. doi: 10.1038/sj.sc.3102145. Epub 2007 Nov 27.
Fougere RJ, Currie KD, Nigro MK, Stothers L, Rapoport D, Krassioukov AV. Reduction in Bladder-Related Autonomic Dysreflexia after OnabotulinumtoxinA Treatment in Spinal Cord Injury. J Neurotrauma. 2016 Sep 15;33(18):1651-7. doi: 10.1089/neu.2015.4278. Epub 2016 Apr 13.
Prevention of thromboembolism in spinal cord injury. Consortium for Spinal Cord Medicine. J Spinal Cord Med. 1997 Jul;20(3):259-83. doi: 10.1080/10790268.1997.11719479. No abstract available.
Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011 Nov;34(6):535-46. doi: 10.1179/204577211X13207446293695. No abstract available.
Laughlin MH, Schrage WG. Effects of muscle contraction on skeletal muscle blood flow: when is there a muscle pump? Med Sci Sports Exerc. 1999 Jul;31(7):1027-35. doi: 10.1097/00005768-199907000-00016.
Hubli M, Currie KD, West CR, Gee CM, Krassioukov AV. Physical exercise improves arterial stiffness after spinal cord injury. J Spinal Cord Med. 2014 Nov;37(6):782-5. doi: 10.1179/2045772314Y.0000000232. Epub 2014 Jun 29.
Hubli M, Krassioukov AV. Ambulatory blood pressure monitoring in spinal cord injury: clinical practicability. J Neurotrauma. 2014 May 1;31(9):789-97. doi: 10.1089/neu.2013.3148. Epub 2014 Jan 30.
Contributors:; Krassioukov A, Biering-Sorensen CF, Donovan W, Kennelly M, Kirshblum S, Krogh K, Alexander MS, Vogel L, And Wecht J. International Standards to document remaining Autonomic Function after Spinal Cord Injury (ISAFSCI), First Edition 2012. Top Spinal Cord Inj Rehabil. 2012 Summer;18(3):282-96. doi: 10.1310/sci1803-282. No abstract available.
West CR, Gee CM, Voss C, Hubli M, Currie KD, Schmid J, Krassioukov AV. Cardiovascular control, autonomic function, and elite endurance performance in spinal cord injury. Scand J Med Sci Sports. 2015 Aug;25(4):476-85. doi: 10.1111/sms.12308. Epub 2014 Aug 31.
Costa P, Perrouin-Verbe B, Colvez A, Didier J, Marquis P, Marrel A, Amarenco G, Espirac B, Leriche A. Quality of life in spinal cord injury patients with urinary difficulties. Development and validation of qualiveen. Eur Urol. 2001 Jan;39(1):107-13. doi: 10.1159/000052421.
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi: 10.1111/j.1532-5415.2005.53221.x.
Malhotra A, Shah N, Depasquale J, Baddoura W, Spira R, Rector T. Use of Bristol Stool Form Scale to predict the adequacy of bowel preparation - a prospective study. Colorectal Dis. 2016 Feb;18(2):200-4. doi: 10.1111/codi.13084.
Krogh K, Christensen P, Sabroe S, Laurberg S. Neurogenic bowel dysfunction score. Spinal Cord. 2006 Oct;44(10):625-31. doi: 10.1038/sj.sc.3101887. Epub 2005 Dec 13.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
REB18- 1592
Identifier Type: -
Identifier Source: org_study_id