Use of BMAC With Hip Arthroscopy Treatment of FAI and Labral Tear
NCT ID: NCT03909139
Last Updated: 2025-10-27
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
400 participants
OBSERVATIONAL
2019-09-06
2027-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Correction of labral pathology presents a technical challenge and many techniques currently exist. Increased understanding of the structure-functional relationship dictated by labral anatomy has led to the development of methods aimed at restoring functional anatomy by re-establishing the labrum's native position and contour on the rim of the acetabulum. Therefore, akin to repairing a torn meniscus in the knee, restoring the anatomic footprint of a torn labrum will reconstitute normal joint biomechanics.
Despite the advances in techniques for labral repair, strategies for mitigating or repairing damage to the chondrolabral junction do not yet exist. This area has been shown to consist of hyaline and fibro cartilage. Many techniques for cartilage repair exist, although most are not feasible due to technical challenges specific to the hip joint.
The management of articular cartilage defects is one of the most challenging clinical problems for orthopaedic surgeons. Articular cartilage has a limited intrinsic healing capacity, and pathology frequently results in gradual tissue deterioration. Currently, the standard surgical intervention for end-stage degenerative joint pathology is total joint replacement. Early surgical interventions for symptomatic cartilage lesions including cell based therapies such as autologous chondrocyte implantation (ACI), bone marrow aspirate concentrate (BMAC) implantation, or microfracture have been suggested to restore normal joint congruity and minimize further joint deterioration. Techniques such as ACI, which have been successfully used in the knee joint, have limited application in the hip due to the technical difficulties of open procedures.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Bone Marrow Aspirate Concentrate Use in Hip Osteoarthritis
NCT03410355
Outcomes Data of Bone Marrow Stem Cells to Treat Hip and Knee Osteoarthritis
NCT01601951
Efficacy of PRP (Platelet Rich Plasma) Following Arthroscopic Microfracture of Chondral Lesions of the Hip
NCT02183896
Microdrilling Surgery for Full Thickness Chondral Lesions of the Knee Augmented With Concentrated Bone Marrow Aspirate, Platelet Rich Plasma and Hyaluronic Acid
NCT02285725
Intra-articular Autologous Bone Marrow Aspirate Injection for Knee Osteoarthritis
NCT03130335
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Anatomic labral refixation aims to preserve healthy tissue and restore native joint anatomy and biomechanics. Labral tears that are caused by Femoro-Acetubular Impingement (FAI) require concomitant correction of bony cam lesions, pincer lesions, or both to prevent reinjury of the labrum. However, repair has not yet been proven to mitigate the osteoarthritic accelerating effects of labral tears. Many patients presenting with hip pain in the third and fourth decade of life already have osteoarthritic changes seen at the time of arthroscopy. Restoring the biomechanics of the joint via labral repair does not reverse this damage and investigating methods to repair early osteoarthritis is important to the future of hip arthroscopy.
Bone marrow aspirate concentrate (BMAC) has been used effectively in many joints for the management of chondral defect repair. As an alternative to the aforementioned chondral treatment modalities, BMAC treatment does not require multiple procedures or additional waiting time for treatment completion.
Within the technical constraints of the hip joint, bone marrow aspirate concentrate is feasible and potentially efficacious option for the treatment of chondral defects. Late stage hip osteoarthritis is a known factor implicated in poor outcomes in both the surgical and non-surgical treatment options available for chondral defect management. Preventing late stage hip osteoarthritis is paramount to decrease these poor outcomes and improve the patient's quality of life. Early and effective intervention with modalities that afford patients little to no drawbacks, like BMAC treatment, are necessary to achieve these goals.
This is a prospective study which will enroll 400 adult subjects with evidence of an acetabular labrum tear and pincer or cam deformity. Labral tears will be diagnosed by clinical exam and positive magnetic resonance arthrogram (MRA) findings. Pincer deformity is diagnosed with standard antero-posterior radiographs of the pelvis, and cam deformity is diagnosed with antero-posterior and lateral radiographs.
Administration of diagnostic modalities is independent of study protocol as they are routine standard of care. Upon diagnosis, eligible potential subjects will be approached for study enrollment. After consent, enrolled subjects will undergo arthroscopic labral repair using a capsular chondrolabral preservation technique with or without BMAC based on intra-operative findings. The decision to use BMAC is made intra-operatively; therefore the patients are consented for the BMAC prior to surgery. If the chondrolabral junction shows advanced arthritis or the absolute absence of wear the BMAC is unnecessary and not used. This surgery in the absence of BMAC is considered routine practice and standard of care. Subjects will follow-up at routine post-operative intervals of 3 months, 6 months, 12 months, and annually thereafter to monitor progress.
Interval Results:
Martin SD, Kucharik MP, Abraham PF, Nazal MR, Meek WM, Varady NH. Functional Outcomes of Arthroscopic Acetabular Labral Repair with and without Bone Marrow Aspirate Concentrate \[published online ahead of print, 2021 Oct 14\]. J Bone Joint Surg Am. 2021;10.2106/JBJS.20.01740. doi:10.2106/JBJS.20.01740
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
BMAC Application
Patients age 18 or older with evidence consistent with a tear of the acetabular labrum and breakdown of the chondrolabral junction and consent to arthroscopic labral tear repair.
BMAC application at the time of arthroscopic labral repair.
BMAC
A bone marrow biopsy needle will be inserted through an arthroscopy portal and directed to the acetabuloplasty site. Bone marrow is aspirated then centrifuged. From the centrifuged sample, the buffy coat layer (layer of cells, found between the red blood cells and the plasma layers) is removed. The buffy coat layer contains mesenchymal stromal cells. This is called BMAC or Bone Marrow Aspirate Concentrate. The BMAC will be injected into the intra-articular space.
No BMAC Application
Patients age 18 or older with evidence consistent with a tear of the acetabular labrum and breakdown of the chondrolabral junction and consent to arthroscopic labral tear repair.
No BMAC application at the time of arthroscopic labral repair.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
BMAC
A bone marrow biopsy needle will be inserted through an arthroscopy portal and directed to the acetabuloplasty site. Bone marrow is aspirated then centrifuged. From the centrifuged sample, the buffy coat layer (layer of cells, found between the red blood cells and the plasma layers) is removed. The buffy coat layer contains mesenchymal stromal cells. This is called BMAC or Bone Marrow Aspirate Concentrate. The BMAC will be injected into the intra-articular space.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Symptoms consistent with a tear of the acetabular labrum (i.e., catching, clicking, popping, pain with sitting, episodic pain, pain with hip flexion, adduction, and/or internal rotation): asymptomatic labral tears do exist in the general population however there is not definitive evidence to suggest treatment of asymptomatic tears is beneficial.
3. Symptoms not due to some other acute process in or around the hip (including septic arthritis, osteonecrosis, hemarthrosis, iliotibial band syndrome, fractures of the femoral neck or head, fractures of the acetabulum, greater trochanteric pain syndrome, sacroiliac joint pain, piriformis syndrome, low back pain associated with hip pain and not knee nor acute low back injury): certain conditions are not treatable by either arthroscopy or physical therapy. Some of these conditions can be managed with physical therapy but not arthroscopy.
4. Availability of hip radiographs and magnetic resonance imaging (MRI and/or MRA): needed to assess eligibility
5. Evidence of labral tear on MRI and/or MRA: documentation of acetabular labrum tear
6. Willingness to participate and ability to understand and sign informed consent document: ability to understand study and consent willingly
7. Returning subjects enrolled in protocol 2017P001391/PHS
Exclusion Criteria
2. Systemic infection: surgery is generally contraindicated when systemic infection is present.
3. Systemic heparinization: the vascularity of the bone and adjacent tissues is significant, posing a potential problem for bleeding when the patient is anti-coagulated.
4. Pregnant women/fetuses: although surgery can be performed on pregnant women, pregnant women are excluded under federal regulations.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Massachusetts General Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Scott D Martin
Principal Investigator, Director, Joint Preservation Service, Director, MGH Sports Medicine Fellowship
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Scott D Martin, MD
Role: PRINCIPAL_INVESTIGATOR
Massachusetts General Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
MGH, Massachusetts General Hospital
Boston, Massachusetts, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Cotten A, Boutry N, Demondion X, Paret C, Dewatre F, Liesse A, Chastanet P, Fontaine C. Acetabular labrum: MRI in asymptomatic volunteers. J Comput Assist Tomogr. 1998 Jan-Feb;22(1):1-7. doi: 10.1097/00004728-199801000-00001.
Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ. Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med. 2012 Dec;40(12):2720-4. doi: 10.1177/0363546512462124. Epub 2012 Oct 25.
Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003 Dec;(417):112-20. doi: 10.1097/01.blo.0000096804.78689.c2.
Field RE, Rajakulendran K. The labro-acetabular complex. J Bone Joint Surg Am. 2011 May;93 Suppl 2:22-7. doi: 10.2106/JBJS.J.01710.
Song Y, Ito H, Kourtis L, Safran MR, Carter DR, Giori NJ. Articular cartilage friction increases in hip joints after the removal of acetabular labrum. J Biomech. 2012 Feb 2;45(3):524-30. doi: 10.1016/j.jbiomech.2011.11.044. Epub 2011 Dec 15.
Byrd JW. The role of hip arthroscopy in the athletic hip. Clin Sports Med. 2006 Apr;25(2):255-78, viii. doi: 10.1016/j.csm.2005.12.007.
Khanduja V, Villar RN. Arthroscopic surgery of the hip: current concepts and recent advances. J Bone Joint Surg Br. 2006 Dec;88(12):1557-66. doi: 10.1302/0301-620X.88B12.18584.
Kelly BT, Weiland DE, Schenker ML, Philippon MJ. Arthroscopic labral repair in the hip: surgical technique and review of the literature. Arthroscopy. 2005 Dec;21(12):1496-504. doi: 10.1016/j.arthro.2005.08.013.
Montgomery SR, Ngo SS, Hobson T, Nguyen S, Alluri R, Wang JC, Hame SL. Trends and demographics in hip arthroscopy in the United States. Arthroscopy. 2013 Apr;29(4):661-5. doi: 10.1016/j.arthro.2012.11.005. Epub 2013 Feb 1.
Fry R, Domb B. Labral base refixation in the hip: rationale and technique for an anatomic approach to labral repair. Arthroscopy. 2010 Sep;26(9 Suppl):S81-9. doi: 10.1016/j.arthro.2010.01.021. Epub 2010 Jul 7.
Lubowitz JH, Poehling GG. Watch your footprint: anatomic ACL reconstruction. Arthroscopy. 2009 Oct;25(10):1059-60. doi: 10.1016/j.arthro.2009.08.001. No abstract available.
Audenaert EA, Dhollander AA, Forsyth RG, Corten K, Verbruggen G, Pattyn C. Histologic assessment of acetabular labrum healing. Arthroscopy. 2012 Dec;28(12):1784-9. doi: 10.1016/j.arthro.2012.06.012. Epub 2012 Oct 17.
Philippon MJ, Arnoczky SP, Torrie A. Arthroscopic repair of the acetabular labrum: a histologic assessment of healing in an ovine model. Arthroscopy. 2007 Apr;23(4):376-80. doi: 10.1016/j.arthro.2007.01.017.
Petersen W, Petersen F, Tillmann B. Structure and vascularization of the acetabular labrum with regard to the pathogenesis and healing of labral lesions. Arch Orthop Trauma Surg. 2003 Jul;123(6):283-8. doi: 10.1007/s00402-003-0527-7. Epub 2003 Jun 7.
Syed HM, Martin SD. Arthroscopic acetabular recession with chondrolabral preservation. Am J Orthop (Belle Mead NJ). 2013 Apr;42(4):181-4.
Matles AL. A microscopic study of the newborn fibrocartilagenous acetabular labrum. Clin Orthop Relat Res. 1967 Sep-Oct;54:197-206. No abstract available.
Seldes RM, Tan V, Hunt J, Katz M, Winiarsky R, Fitzgerald RH Jr. Anatomy, histologic features, and vascularity of the adult acetabular labrum. Clin Orthop Relat Res. 2001 Jan;(382):232-40. doi: 10.1097/00003086-200101000-00031.
Lohe F, Eckstein F, Sauer T, Putz R. Structure, strain and function of the transverse acetabular ligament. Acta Anat (Basel). 1996;157(4):315-23. doi: 10.1159/000147894.
Konrath GA, Hamel AJ, Olson SA, Bay B, Sharkey NA. The role of the acetabular labrum and the transverse acetabular ligament in load transmission in the hip. J Bone Joint Surg Am. 1998 Dec;80(12):1781-8. doi: 10.2106/00004623-199812000-00008.
Cashin M, Uhthoff H, O'Neill M, Beaule PE. Embryology of the acetabular labral-chondral complex. J Bone Joint Surg Br. 2008 Aug;90(8):1019-24. doi: 10.1302/0301-620X.90B8.20161.
Bedi A, Kelly BT. Femoroacetabular impingement. J Bone Joint Surg Am. 2013 Jan 2;95(1):82-92. doi: 10.2106/JBJS.K.01219.
McCarthy JC. The diagnosis and treatment of labral and chondral injuries. Instr Course Lect. 2004;53:573-7.
Ferguson SJ, Bryant JT, Ganz R, Ito K. The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech. 2000 Aug;33(8):953-60. doi: 10.1016/s0021-9290(00)00042-7.
Ferguson SJ, Bryant JT, Ganz R, Ito K. The acetabular labrum seal: a poroelastic finite element model. Clin Biomech (Bristol). 2000 Jul;15(6):463-8. doi: 10.1016/s0268-0033(99)00099-6.
Ferguson SJ, Bryant JT, Ganz R, Ito K. An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech. 2003 Feb;36(2):171-8. doi: 10.1016/s0021-9290(02)00365-2.
Larson CM, Giveans MR. Arthroscopic debridement versus refixation of the acetabular labrum associated with femoroacetabular impingement. Arthroscopy. 2009 Apr;25(4):369-76. doi: 10.1016/j.arthro.2008.12.014. Epub 2009 Mar 5.
Espinosa N, Beck M, Rothenfluh DA, Ganz R, Leunig M. Treatment of femoro-acetabular impingement: preliminary results of labral refixation. Surgical technique. J Bone Joint Surg Am. 2007 Mar;89 Suppl 2 Pt.1:36-53. doi: 10.2106/JBJS.F.01123.
Larson CM, Giveans MR, Stone RM. Arthroscopic debridement versus refixation of the acetabular labrum associated with femoroacetabular impingement: mean 3.5-year follow-up. Am J Sports Med. 2012 May;40(5):1015-21. doi: 10.1177/0363546511434578. Epub 2012 Feb 3.
Limbird TJ. Application of laser Doppler technology to meniscal injuries. Clin Orthop Relat Res. 1990 Mar;(252):88-91.
Perimed. Laser Doppler Probes. Perimed AB. Web. 25 Aug. 2013.
Levy O, Relwani J, Zaman T, Even T, Venkateswaran B, Copeland S. Measurement of blood flow in the rotator cuff using laser Doppler flowmetry. J Bone Joint Surg Br. 2008 Jul;90(7):893-8. doi: 10.1302/0301-620X.90B7.19918.
Swiontkowski MF, Schlehr F, Sanders R, Limbird TA, Pou A, Collins JC. Direct, real time measurement of meniscal blood flow. An experimental investigation in sheep. Am J Sports Med. 1988 Sep-Oct;16(5):429-33. doi: 10.1177/036354658801600501.
Swiontkowski MF, Iannotti JP, Boulas HJ, Esterhai JL. Intraoperative assessment of rotator cuff vascularity using laser doppler flowmetry. In: Post M, Morr, eds. Surgery of the shoulder. St. Louis: Mosby, 1990: 208-12.
Rathbun JB, Macnab I. The microvascular pattern of the rotator cuff. J Bone Joint Surg Br. 1970 Aug;52(3):540-53. No abstract available.
McCarthy JC, Jarrett BT, Ojeifo O, Lee JA, Bragdon CR. What factors influence long-term survivorship after hip arthroscopy? Clin Orthop Relat Res. 2011 Feb;469(2):362-71. doi: 10.1007/s11999-010-1559-2.
Hettrich CM, Crawford D, Rodeo SA. Cartilage repair: third-generation cell-based technologies--basic science, surgical techniques, clinical outcomes. Sports Med Arthrosc Rev. 2008 Dec;16(4):230-5. doi: 10.1097/JSA.0b013e31818cdc98.
Holton J, Imam MA, Snow M. Bone Marrow Aspirate in the Treatment of Chondral Injuries. Front Surg. 2016 Jun 16;3:33. doi: 10.3389/fsurg.2016.00033. eCollection 2016.
Green CJ, Beck A, Wood D, Zheng MH. The biology and clinical evidence of microfracture in hip preservation surgery. J Hip Preserv Surg. 2016 Feb 26;3(2):108-23. doi: 10.1093/jhps/hnw007. eCollection 2016 Jul.
Jordan MA, Van Thiel GS, Chahal J, Nho SJ. Operative treatment of chondral defects in the hip joint: a systematic review. Curr Rev Musculoskelet Med. 2012 Sep;5(3):244-53. doi: 10.1007/s12178-012-9134-y.
Dhollander AA, De Neve F, Almqvist KF, Verdonk R, Lambrecht S, Elewaut D, Verbruggen G, Verdonk PC. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc. 2011 Apr;19(4):536-42. doi: 10.1007/s00167-010-1337-4. Epub 2010 Dec 11.
Murrell WD, Anz AW, Badsha H, Bennett WF, Boykin RE, Caplan AI. Regenerative treatments to enhance orthopedic surgical outcome. PM R. 2015 Apr;7(4 Suppl):S41-S52. doi: 10.1016/j.pmrj.2015.01.015.
Hernigou P, Flouzat Lachaniette CH, Delambre J, Zilber S, Duffiet P, Chevallier N, Rouard H. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop. 2014 Sep;38(9):1811-8. doi: 10.1007/s00264-014-2391-1. Epub 2014 Jun 7.
Ellera Gomes JL, da Silva RC, Silla LM, Abreu MR, Pellanda R. Conventional rotator cuff repair complemented by the aid of mononuclear autologous stem cells. Knee Surg Sports Traumatol Arthrosc. 2012 Feb;20(2):373-7. doi: 10.1007/s00167-011-1607-9. Epub 2011 Jul 20.
Kanaya A, Deie M, Adachi N, Nishimori M, Yanada S, Ochi M. Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model. Arthroscopy. 2007 Jun;23(6):610-7. doi: 10.1016/j.arthro.2007.01.013.
Filardo G, Perdisa F, Roffi A, Marcacci M, Kon E. Stem cells in articular cartilage regeneration. J Orthop Surg Res. 2016 Apr 12;11:42. doi: 10.1186/s13018-016-0378-x.
Emara KM, Diab RA, Emara AK. Recent biological trends in management of fracture non-union. World J Orthop. 2015 Sep 18;6(8):623-8. doi: 10.5312/wjo.v6.i8.623. eCollection 2015 Sep 18.
Kemp JL, Collins NJ, Roos EM, Crossley KM. Psychometric properties of patient-reported outcome measures for hip arthroscopic surgery. Am J Sports Med. 2013 Sep;41(9):2065-73. doi: 10.1177/0363546513494173. Epub 2013 Jul 8.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2019P002191
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.