Investigating the Effect of Nasal High Flow Oxygen Therapy on Regional Lung Function
NCT ID: NCT03821311
Last Updated: 2019-12-27
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
8 participants
INTERVENTIONAL
2018-12-06
2019-06-18
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The therapy is used for a variety of disease conditions including chronic obstructive pulmonary disease (COPD). Patients with COPD frequently manifest flow limitation during resting tidal breathing, through dynamic compression of the airways, which is attributed to a loss of parenchymal tethering of the airways. In patients with severe COPD and respiratory failure, improved oxygenation and ventilation may reduce mortality. There are limited clinical data available in adult applications of NHF and on the effectiveness of NHF in patients with stable moderate or severe COPD.
The mechanisms through which NHF affects the respiratory system are still being investigated. Two of the proposed mechanisms of action of NHF therapy are the generation of 3-5 cmH20 positive airway pressure during expiration and washout of the nasopharyngeal dead space. Positive airway pressure has been shown to improve oxygenation, ventilation-perfusion matching and respiratory rates, while nasopharyngeal washout reduces the anatomical dead space and thereby improves alveolar ventilation.
Our working hypothesis is that positive nasopharyngeal pressure generated by NHF particularly during expiration can help maintain small peripheral airways patent, thereby reducing the amount of gas trapping.
Gas trapping can be quantified based on densitometric analysis of registered computerized tomography images obtained at high and low lung volumes.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Computed tomography examination
Each patient will undergo a low-dose supine position chest CT scan including end-inspiratory and expiratory acquisitions, corresponding to the routine protocol for COPD patients, except that this end-inspiratory/end-expiratory CT is repeated 3 times for total of 6 CT acquisitions.
Computed tomography
End-inspiratory/end-expiratory CT is repeated 3 times corresponding to the 3 studied conditions: At baseline, through expiratory resistive loading using an adjustable PEP mask, and after 5 min of nasal high flow therapy at 25 L/min.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Computed tomography
End-inspiratory/end-expiratory CT is repeated 3 times corresponding to the 3 studied conditions: At baseline, through expiratory resistive loading using an adjustable PEP mask, and after 5 min of nasal high flow therapy at 25 L/min.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Moderate: FEV1/FVC \< 0.7 or lower limit of normal, and 30 \< FEV1 ≤ 60 percent predicted; Severe: FEV1/FVC \< 0.7 or lower limit of normal, and FEV1 ≤ 30 percent predicted
* Indication for CT imaging as part of routine workup.
* Written informed consent signed
Exclusion Criteria
* Persons referred to in Articles L1151-5 to L1151-8 and L1122-1-2 of the French Public Health Code: Declared pregnant, parturient or lactating, persons deprived of their liberty by judicial or administrative decision, minors, adults who are legally protected or unable to express consent, etc.
* Evolving neoplastic disease
* Patient without social security health care coverage
* Subject in an exclusion period from another study
* Any contraindication to NHF such as nasal or upper airway bleeding, secretion, tumor, recent surgery; cervical, nasal or skull fracture.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Grenoble
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital Grenoble
Grenoble, Isère, France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013 Feb 15;187(4):347-65. doi: 10.1164/rccm.201204-0596PP. Epub 2012 Aug 9.
Stubbing DG, Pengelly LD, Morse JL, Jones NL. Pulmonary mechanics during exercise in subjects with chronic airflow obstruction. J Appl Physiol Respir Environ Exerc Physiol. 1980 Sep;49(3):511-5. doi: 10.1152/jappl.1980.49.3.511.
Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, Prat G, Boulain T, Morawiec E, Cottereau A, Devaquet J, Nseir S, Razazi K, Mira JP, Argaud L, Chakarian JC, Ricard JD, Wittebole X, Chevalier S, Herbland A, Fartoukh M, Constantin JM, Tonnelier JM, Pierrot M, Mathonnet A, Beduneau G, Deletage-Metreau C, Richard JC, Brochard L, Robert R; FLORALI Study Group; REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015 Jun 4;372(23):2185-96. doi: 10.1056/NEJMoa1503326. Epub 2015 May 17.
Pisani L, Vega ML. Use of Nasal High Flow in Stable COPD: Rationale and Physiology. COPD. 2017 Jun;14(3):346-350. doi: 10.1080/15412555.2017.1315715. Epub 2017 May 1.
Curley GF, Laffy JG, Zhang H, Slutsky AS. Noninvasive respiratory support for acute respiratory failure-high flow nasal cannula oxygen or non-invasive ventilation? J Thorac Dis. 2015 Jul;7(7):1092-7. doi: 10.3978/j.issn.2072-1439.2015.07.18. No abstract available.
Corley A, Caruana LR, Barnett AG, Tronstad O, Fraser JF. Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in post-cardiac surgical patients. Br J Anaesth. 2011 Dec;107(6):998-1004. doi: 10.1093/bja/aer265. Epub 2011 Sep 9.
Riera J, Perez P, Cortes J, Roca O, Masclans JR, Rello J. Effect of high-flow nasal cannula and body position on end-expiratory lung volume: a cohort study using electrical impedance tomography. Respir Care. 2013 Apr;58(4):589-96. doi: 10.4187/respcare.02086.
Spahija J, de Marchie M, Grassino A. Effects of imposed pursed-lips breathing on respiratory mechanics and dyspnea at rest and during exercise in COPD. Chest. 2005 Aug;128(2):640-50. doi: 10.1378/chest.128.2.640.
O'Donnell DE, Sanii R, Anthonisen NR, Younes M. Expiratory resistive loading in patients with severe chronic air-flow limitation. An evaluation of ventilatory mechanics and compensatory responses. Am Rev Respir Dis. 1987 Jul;136(1):102-7. doi: 10.1164/ajrccm/136.1.102.
Mueller RE, Petty TL, Filley GF. Ventilation and arterial blood gas changes induced by pursed lips breathing. J Appl Physiol. 1970 Jun;28(6):784-9. doi: 10.1152/jappl.1970.28.6.784. No abstract available.
Galban CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, Galban S, Rehemtulla A, Kazerooni EA, Martinez FJ, Ross BD. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012 Nov;18(11):1711-5. doi: 10.1038/nm.2971. Epub 2012 Oct 7.
Fricke K, Tatkov S, Domanski U, Franke KJ, Nilius G, Schneider H. Nasal high flow reduces hypercapnia by clearance of anatomical dead space in a COPD patient. Respir Med Case Rep. 2016 Aug 26;19:115-7. doi: 10.1016/j.rmcr.2016.08.010. eCollection 2016.
Kybic J, Unser M. Fast parametric elastic image registration. IEEE Trans Image Process. 2003;12(11):1427-42. doi: 10.1109/TIP.2003.813139.
Gibson GJ, Loddenkemper R, Lundback B, Sibille Y. Respiratory health and disease in Europe: the new European Lung White Book. Eur Respir J. 2013 Sep;42(3):559-63. doi: 10.1183/09031936.00105513. No abstract available.
Cohen JG, Broche L, Machichi M, Ferretti GR, Tamisier R, Pepin JL, Bayat S. Nasal High Flow at 25 L/min or Expiratory Resistive Load Do Not Improve Regional Lung Function in Patients With COPD: A Functional CT Imaging Study. Front Physiol. 2021 Jun 10;12:683316. doi: 10.3389/fphys.2021.683316. eCollection 2021.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
38RC17.376
Identifier Type: -
Identifier Source: org_study_id