Melanoma Checkpoint and Gut Microbiome Alteration With Microbiome Intervention
NCT ID: NCT03817125
Last Updated: 2024-06-06
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
14 participants
INTERVENTIONAL
2019-01-28
2022-03-04
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effect of the Microbiome on Immune Checkpoint Inhibitor Response in Melanoma Patients
NCT05102773
Predicting Response to Immunotherapy for Melanoma With Gut Microbiome and Metabolomics
NCT03643289
SBRT as a Vaccination for Metastatic Melanoma
NCT04042506
A Phase 1/2a Study of IMM-1-104 in Participants With Advanced or Metastatic Solid Tumors
NCT05585320
Phase 1b Safety Study of CMB305 in Patients With Locally Advanced, Relapsed, or Metastatic Cancer Expressing NY-ESO-1
NCT02387125
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
SER-401 Matching Placebo/ Nivolumab
Participants will undergo a 4-day lead-in pretreatment with antibiotic placebo, then matching placebo for SER-401 and nivolumab (480 mg) treatment.
Placebo for antibiotic
Placebo for antibiotic will be administered orally four times a day for 4 days, followed by a 2-3 day washout.
Nivolumab
Nivolumab (480 mg) will be administered intravenously (IV) according to institutional guidelines every 4 weeks for up to 12 cycles. A cycle is defined as 4 calendar weeks.
Matching Placebo for SER-401
Administered once a day for 7 days during the lead-in phase, followed by once a day for 8 weeks during the microbiome/anti-PD-1 treatment phase.
SER-401/ Nivolumab
Participants will undergo a 4-day lead-in pretreatment with antibiotic (vancomycin) to prime the gut microbiome for engraftment of the oral microbiome study intervention, then SER-401 and nivolumab treatment.
Vancomycin pretreatment
Vancomycin (125mg) will be administered orally four times a day, followed by a 2-3 day washout.
Nivolumab
Nivolumab (480 mg) will be administered intravenously (IV) according to institutional guidelines every 4 weeks for up to 12 cycles. A cycle is defined as 4 calendar weeks.
SER-401
Administered once a day for 7 days during the lead-in phase, followed by once a day for 8 weeks during the microbiome/anti-PD-1 treatment phase.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Placebo for antibiotic
Placebo for antibiotic will be administered orally four times a day for 4 days, followed by a 2-3 day washout.
Vancomycin pretreatment
Vancomycin (125mg) will be administered orally four times a day, followed by a 2-3 day washout.
Nivolumab
Nivolumab (480 mg) will be administered intravenously (IV) according to institutional guidelines every 4 weeks for up to 12 cycles. A cycle is defined as 4 calendar weeks.
Matching Placebo for SER-401
Administered once a day for 7 days during the lead-in phase, followed by once a day for 8 weeks during the microbiome/anti-PD-1 treatment phase.
SER-401
Administered once a day for 7 days during the lead-in phase, followed by once a day for 8 weeks during the microbiome/anti-PD-1 treatment phase.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Histologically-confirmed Stage IV cutaneous melanoma or Stage III cutaneous, acral or mucosal melanoma that is judged inoperable. Participants with a history of uveal melanoma are not eligible.
3. Measurable disease as defined by Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1; ie, defined as at least 1 lesion that can be accurately measured in at least 1 dimension \[longest diameter to be recorded\] with a minimum size of ≥ 10 mm by computerized tomography \[CT\] scan or caliper measurement on clinical exam or ≥ 20 mm by chest X-ray).
1. Malignant lymph nodes must be ≥ 15 mm in short axis when assessed by CT scan to be considered pathologically enlarged and measurable.
2. Participants must have at least one measurable lesion by RECIST and a separate lesion amenable to biopsy that has not been previously irradiated.
i. Participants must be willing to undergo a newly-obtained core needle or incisional biopsy at baseline (prior to antibiotic or antibiotic placebo administration). Fine needle aspiration is not acceptable.
4. Participants must be willing to undergo tumor biopsy on treatment.
5. Prior adjuvant or neoadjuvant melanoma therapy is permitted if completed at least 6 weeks prior to randomization and all related AEs have either returned to baseline or stabilized.
1. Prior anti-CTLA-4 therapy in the adjuvant setting is allowed if completed at least 12 weeks prior to the first dose of anti-PD-1.
Exclusion Criteria
2. Participants with a history of another cancer in the last 5 years, except for: a) curatively resected non-melanoma skin cancer; b) curatively treated cervical carcinoma in situ; c) localized prostate cancer not requiring systemic therapy; and c) other primary tumors with no known active disease present that, in the opinion of the Investigator and the Sponsor, will not affect participant outcome in the setting of the current diagnosis.
3. Any known, untreated brain metastases. Participants with brain metastases are eligible if these have been treated, and provided:
1. Brain metastases must be stable (image-documented) 4 weeks after completion of treatment for brain metastases and require treatment with less than 10 mg/day prednisone equivalent for at least 2 weeks prior to study intervention administration.
2. Neurological symptoms should be absent or returned to baseline.
4. Prior checkpoint inhibitor therapy with anti-PD-1 or anti-PD-L1 in the adjuvant setting.
a. Exception: Participants with stage 3 or 4 cutaneous melanoma status post-resection who have received up to one year of adjuvant anti-PD-1 therapy who have recurred \> 6 months after their last dose of anti-PD-1 therapy are eligible.
5. Other prior systemic treatment (ie, anticancer chemotherapy, immunotherapy, or investigational agents) for unresectable or metastatic melanoma EXCEPT:
1. Prior BRAF-targeted therapy (ie, BRAF or BRAF-MEK) in the metastatic setting is allowed if completed at least 4 weeks prior to the first dose of anti-PD-1.
2. Prior anti-CTLA 4 therapy in the adjuvant setting are allowed if completed at least 12 weeks prior to the first dose of anti-PD-1.
6. History of active inflammatory bowel disease (eg, active Crohn's disease or ulcerative colitis) with diarrhea OR major gastrointestinal surgery (not including appendectomy or cholecystectomy) within 3 months of enrollment (ie, signed informed consent for the study), OR any history of total colectomy or bariatric surgery (bariatric surgery which does not disrupt the gastrointestinal lumen, ie, restrictive procedures such as banding, are permitted).
7. Any diagnosis of autoimmune disease. Participants with Type I diabetes mellitus, hypothyroidism only requiring hormone replacement, adrenal insufficiency on replacement dose steroids, skin disorders (such as vitiligo, psoriasis or alopecia) not requiring systemic treatment, or conditions not expected to recur in the absence of an external trigger are permitted to enroll.
a. Participants with controlled Type 1 diabetes mellitus on a stable insulin regimen may be eligible.
8. Has a condition requiring systemic treatment with either corticosteroids (\> 10 mg daily prednisone equivalents) or other immunosuppressive medications within 14 days of study intervention administration or has a contrast allergy requiring premedication with corticosteroids. Inhaled or topical steroids, and adrenal replacement doses \> 10 mg daily prednisone equivalents are permitted in the absence of active autoimmune disease.
9. History of idiopathic pulmonary fibrosis, pneumonitis (including drug induced), organizing pneumonia (ie, bronchiolitis obliterans, cryptogenic organizing pneumonia, etc.), or evidence of active pneumonitis on screening chest CT scan.
a. History of radiation pneumonitis in the radiation field (fibrosis) is permitted.
10. Has a transplanted organ or has undergone allogeneic bone marrow transplant.
11. Has received a live vaccine within 30 days prior to first dose. Participants must not receive live, attended influenza vaccine (eg, FluMist) within 30 days prior to Cycle 1, Day 1 or at any time during the study and 100 days after last dose of nivolumab.
12. Has used antibiotics within 30 days prior to randomization or has planned or required need for antibiotic prophylaxis for more than 24 consecutive hours during the course of the study.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Seres Therapeutics, Inc.
INDUSTRY
Parker Institute for Cancer Immunotherapy
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Parker Institute for Cancer Immunotherapy
Role: STUDY_DIRECTOR
Parker Institute for Cancer Immunotherapy
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The Angeles Clinic and Research Institute
Los Angeles, California, United States
Massachusetts General Hospital
Boston, Massachusetts, United States
Dana-Farber Cancer Institute
Boston, Massachusetts, United States
Rutgers Cancer Institute of New Jersey
New Brunswick, New Jersey, United States
Memorial Sloan Kettering Cancer Center
New York, New York, United States
MD Anderson Cancer Center
Houston, Texas, United States
Huntsman Cancer Institute
Salt Lake City, Utah, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015 Feb 4;2(1):ofv004. doi: 10.1093/ofid/ofv004. eCollection 2015 Jan.
Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Ding S, Byrd DR, Cascinelli N, Cochran AJ, Coit DG, Eggermont AM, Johnson T, Kirkwood JM, Leong SP, McMasters KM, Mihm MC Jr, Morton DL, Ross MI, Sondak VK. Multivariate analysis of prognostic factors among 2,313 patients with stage III melanoma: comparison of nodal micrometastases versus macrometastases. J Clin Oncol. 2010 May 10;28(14):2452-9. doi: 10.1200/JCO.2009.27.1627. Epub 2010 Apr 5.
Choi HH, Cho YS. Fecal Microbiota Transplantation: Current Applications, Effectiveness, and Future Perspectives. Clin Endosc. 2016 May;49(3):257-65. doi: 10.5946/ce.2015.117. Epub 2016 Mar 9.
Dubberke ER, Lee CH, Orenstein R, Khanna S, Hecht G, Gerding DN. Results From a Randomized, Placebo-Controlled Clinical Trial of a RBX2660-A Microbiota-Based Drug for the Prevention of Recurrent Clostridium difficile Infection. Clin Infect Dis. 2018 Sep 28;67(8):1198-1204. doi: 10.1093/cid/ciy259.
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009 Jan;45(2):228-47. doi: 10.1016/j.ejca.2008.10.026.
Ekwueme DU, Guy GP Jr, Li C, Rim SH, Parelkar P, Chen SC. The health burden and economic costs of cutaneous melanoma mortality by race/ethnicity-United States, 2000 to 2006. J Am Acad Dermatol. 2011 Nov;65(5 Suppl 1):S133-43. doi: 10.1016/j.jaad.2011.04.036.
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018 Jan 5;359(6371):97-103. doi: 10.1126/science.aan4236. Epub 2017 Nov 2.
Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes. 2013 Mar-Apr;4(2):125-35. doi: 10.4161/gmic.23571. Epub 2013 Jan 18.
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 19;363(8):711-23. doi: 10.1056/NEJMoa1003466. Epub 2010 Jun 5.
Khanna S, Button JE, Lombardo MJ, Vulic M, Henn MR, Cook DN, Pomerantz RJ, Hohmann EL. Reply to Lagier et al. J Infect Dis. 2017 Jan 1;215(1):162-164. doi: 10.1093/infdis/jiw490. Epub 2016 Oct 20. No abstract available.
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015 Jul 2;373(1):23-34. doi: 10.1056/NEJMoa1504030. Epub 2015 May 31.
Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nematallah A, Weese JS, Collins S, Moayyedi P, Crowther M, Ropeleski MJ, Jayaratne P, Higgins D, Li Y, Rau NV, Kim PT. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA. 2016 Jan 12;315(2):142-9. doi: 10.1001/jama.2015.18098.
Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease. N Engl J Med. 2016 Dec 15;375(24):2369-2379. doi: 10.1056/NEJMra1600266. No abstract available.
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018 Jan 5;359(6371):104-108. doi: 10.1126/science.aao3290.
McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, Loo V, Shaklee Sammons J, Sandora TJ, Wilcox MH. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018 Mar 19;66(7):987-994. doi: 10.1093/cid/ciy149.
Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015 Jul;149(1):102-109.e6. doi: 10.1053/j.gastro.2015.04.001. Epub 2015 Apr 7.
Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, Leong RWL, Connor S, Ng W, Paramsothy R, Xuan W, Lin E, Mitchell HM, Borody TJ. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017 Mar 25;389(10075):1218-1228. doi: 10.1016/S0140-6736(17)30182-4. Epub 2017 Feb 15.
Pigneur B, Sokol H. Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal Immunol. 2016 Nov;9(6):1360-1365. doi: 10.1038/mi.2016.67. Epub 2016 Jul 27.
Qazi T, Amaratunga T, Barnes EL, Fischer M, Kassam Z, Allegretti JR. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes. 2017 Nov 2;8(6):574-588. doi: 10.1080/19490976.2017.1353848. Epub 2017 Sep 12.
Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu WJ, Weber JS, Gangadhar TC, Hersey P, Dronca R, Joseph RW, Zarour H, Chmielowski B, Lawrence DP, Algazi A, Rizvi NA, Hoffner B, Mateus C, Gergich K, Lindia JA, Giannotti M, Li XN, Ebbinghaus S, Kang SP, Robert C. Association of Pembrolizumab With Tumor Response and Survival Among Patients With Advanced Melanoma. JAMA. 2016 Apr 19;315(15):1600-9. doi: 10.1001/jama.2016.4059.
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, Larkin J, Lorigan P, Neyns B, Blank CU, Hamid O, Mateus C, Shapira-Frommer R, Kosh M, Zhou H, Ibrahim N, Ebbinghaus S, Ribas A; KEYNOTE-006 investigators. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015 Jun 25;372(26):2521-32. doi: 10.1056/NEJMoa1503093. Epub 2015 Apr 19.
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbe C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015 Jan 22;372(4):320-30. doi: 10.1056/NEJMoa1412082. Epub 2014 Nov 16.
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot N, Qu B, Ferrere G, Clemenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018 Jan 5;359(6371):91-97. doi: 10.1126/science.aan3706. Epub 2017 Nov 2.
Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol. 2015 Jun 10;33(17):1889-94. doi: 10.1200/JCO.2014.56.2736. Epub 2015 Feb 9.
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017 Jan;67(1):7-30. doi: 10.3322/caac.21387. Epub 2017 Jan 5.
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015 Nov 27;350(6264):1084-9. doi: 10.1126/science.aac4255. Epub 2015 Nov 5.
Tripp MK, Watson M, Balk SJ, Swetter SM, Gershenwald JE. State of the science on prevention and screening to reduce melanoma incidence and mortality: The time is now. CA Cancer J Clin. 2016 Nov 12;66(6):460-480. doi: 10.3322/caac.21352. Epub 2016 May 27.
Vermeire S, Joossens M, Verbeke K, Wang J, Machiels K, Sabino J, Ferrante M, Van Assche G, Rutgeerts P, Raes J. Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. J Crohns Colitis. 2016 Apr;10(4):387-94. doi: 10.1093/ecco-jcc/jjv203. Epub 2015 Oct 29.
Wang S, Xu M, Wang W, Cao X, Piao M, Khan S, Yan F, Cao H, Wang B. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS One. 2016 Aug 16;11(8):e0161174. doi: 10.1371/journal.pone.0161174. eCollection 2016.
Weingarden A, Gonzalez A, Vazquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D, Knights D, Unno T, Bobr A, Kang J, Khoruts A, Knight R, Sadowsky MJ. Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome. 2015 Mar 30;3:10. doi: 10.1186/s40168-015-0070-0. eCollection 2015.
Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, Maio M, Binder M, Bohnsack O, Nichol G, Humphrey R, Hodi FS. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009 Dec 1;15(23):7412-20. doi: 10.1158/1078-0432.CCR-09-1624. Epub 2009 Nov 24.
Youngster I, Mahabamunuge J, Systrom HK, Sauk J, Khalili H, Levin J, Kaplan JL, Hohmann EL. Oral, frozen fecal microbiota transplant (FMT) capsules for recurrent Clostridium difficile infection. BMC Med. 2016 Sep 9;14(1):134. doi: 10.1186/s12916-016-0680-9.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol
Document Type: Statistical Analysis Plan
Related Links
Access external resources that provide additional context or updates about the study.
NCT02437487: SER-109 Versus Placebo to Prevent Recurrent Clostridium Difficile Infection (RCDI)
NCT02530385: Fecal Microbiota Transplant for Obesity and Metabolism
NCT02618187: A Study to Evaluate the Safety, Tolerability and Microbiome Dynamics of SER- 287 in Subjects With Mild-to-Moderate Ulcerative Colitis Patients
NCT03341143: Fecal Microbiota Transplant (FMT) in Melanoma Patients
NCT03353402: Fecal Microbiota Transplantation (FMT) in Metastatic Melanoma Patients Who Failed Immunotherapy
NCT03637803: MRx0518 and Pembrolizumab Combination Study
Opdivo (nivolumab) US Prescribing Information (USPI), Aug-2018
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PICI0014
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.