RUCONEST® as a Therapeutic Strategy to Reduce the Incidence of Delayed Graft Function
NCT ID: NCT03791476
Last Updated: 2020-12-14
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE1
20 participants
INTERVENTIONAL
2019-06-21
2022-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The main objective of this study are to determine the ability of rhC1INH to reduce the incidence and severity of delayed graft function in comparison to placebo in recipients of kidneys after cardio-circulatory determination of death (DCD).
This trial has specifically been designed to evaluate the protective effect of rhC1INH treatment in patients at high risk of developing DGF. The selection of potential donors to be part of this study will be limited to the population of DCD donors which have historically shown a risk of developing DGF ranging between 40-55%. Participation in each group will be randomly assigned. Treatment will be administered by an intra-operative infusion of placebo or rhC1INH (100 Units/kg) IV followed by twice a day infusion of 50 Units/Kg IV for the following 48 hours.
A total of 20 subjects will be divided into 2 groups:
Group 1: Control group: standard recipient management + placebo (0.9% Sodium Chloride IV to equal volume of investigational arm: intraoperatively, and then every 12 hours x 2 = total of 3 doses). treatment (n=10) Group 2: Standard recipient management + 100 U/kg intraoperative followed by 50 U/kg every 12 hours x 2 = total of 3 doses (200 U/kg).
Max dose 8400 units for the initial dose and 4200 units maximum for the second and third doses.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Control Group
Intervention is saline solution placebo (0.9% Sodium Chloride IV to equal volume of investigational arm: intraoperatively, and then every 12 hours x 2 = total of 3 doses)
Saline Solution
saline solution
rhC1INH
Intervention is rhC1INH 100 U/kg intraoperative followed by 50 U/kg every 12 hours x 2 = total of 3 doses (200 U/kg)
rhC1INH
C1 esterase inhibitor
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
rhC1INH
C1 esterase inhibitor
Saline Solution
saline solution
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
1. Has the ability to understand the requirements of the study, is able to provide written informed consent (including consent for the use and disclosure of research related health information).
2. Male or female at least 18 years of age.
3. Is to be a recipient of a transplant from a deceased donor (donation after cardio-circulatory determination of death criteria).
4. Is able to comply with standard of care induction therapy requirement, such as antibody induction therapy with rabbit polyclonal anti-thymocyte globulin,anti-CD25 (anti-IL2R), or Anti-CD52.
5. A female subject is eligible to enter the study if she is:
1. Not pregnant or nursing
2. Of non-childbearing potential (i.e., post-menopausal defined as having been amenorrheic for at least 1 year prior to screening, or has had a bilateral tubal ligation at least 6 months prior to administration of study drug or bilateral oophorectomy or complete hysterectomy).
3. If of childbearing potential, must have a negative serum pregnancy test within 48 hours prior to transplant surgery and be using an effective means of contraception (per the site-specific guidelines or using 2 methods of birth control concurrently, whichever is more stringent) which will be continued until the Day 180 visit.
6. Male subjects with female partners of childbearing potential must agree to use an effective means of contraception (per the site-specific guidelines or use 2 methods of birth control concurrently, whichever is more stringent), which will be continued until the Day 180 visit. They will also agree not to donate sperm until 6 months after dosing.
7. Must be up-to-date on cancer screening according to site-specific guidelines and past medical history must be negative for biopsy-confirmed malignancy within 5 years of randomization, with the exception of adequately treated basal cell or squamous cell carcinoma in situ or carcinoma of the cervix in situ.
8. Must be willing to comply with the protocol procedures for the duration of the study, including scheduled follow-up visits and examinations.
Exclusion Criteria
2. Participation in any other research study (drug or non-drug) without prior approval from the sponsor investigator.
3. Recipient of a live donor kidney or a kidney from a brain death donor (DBD) donor.
4. Recipient of donor kidney preserved with normothermic machine perfusion.
5. Scheduled to undergo multiorgan transplantation.
6. Has a planned transplant of kidneys that are implanted en-bloc (dual kidney transplantation).
7. Has planned transplant of dual kidneys (from the same donor) transplanted not en-bloc.
8. Has lost first kidney transplant due to graft thrombosis.
9. Is scheduled for transplantation of a kidney from a donor who is known to have received an investigational therapy under another IND/CTA for ischemic/reperfusion injury immediately prior to organ recovery.
10. Known hypersensitivity to human monoclonal antibodies or any of the study drug excipients.
11. Previous hypersensitivity to basiliximab, Campath-1H or antithymocyte globulin (ATG).
12. History of malignancy within the last five years, except excised squamous or basal cell carcinoma of the skin, or cervical intraepithelial neoplasia.
13. HIV positive recipients.
14. Hepatitis B surface antigen positive kidney transplant recipients.
15. Hepatitis B core antibody positive kidney transplant recipients.
16. Hepatitis C virus positive (HCV+) patients who are either untreated or have failed to demonstrate sustained viral remission for more than 12 months after anti-viral treatment.
17. Presence of clinically significant infections requiring continued therapy.
18. Positive screening for active tuberculosis.
19. Existence of any surgical or medical condition, other than the current transplantation which, in the opinion of the investigator, might significantly alter the distribution, metabolism or excretion of study medication.
20. Has a positive T- or B-cell cross-match by NIH anti-globulin lymphocytotoxicity method or CDC crossmatch method, if performed.
21. Has a positive T- or B-cell flow cross-match (over 250 channel shift) AND donor specific anti-HLA antibody (DSA) detected by flow cytometry (Luminex®) based antigen-specific anti-HLA antibody testing (over 4000 MFI) or by similar methodology, if performed.
22. History or presence of a medical condition or disease that in the investigator's assessment would place the patient at an unacceptable risk for study participation.
23. Lactating or pregnant woman.
24. Patient institutionalized by administrative or court order.
25. HLA or ABO incompatible kidney defined as a positive cytotoxic crossmatch or positive flow cross match.
26. Patients with known prothrombotic disorder (e.g. homozygous factor V leiden)
27. History of thrombosis or hypercoagulable state excluding access clotting
28. History of administration of C1INH containing products or recombinant C1INH within 15 days prior to study entry.
29. Patient with an abnormal Thromboelastogram.- results must be reported out prior to dosing (Defined by Coagulation Index of \>3.0)
30. Patients on warfarin or other anti-coagulants or anti-platelets, such as Plavix, low molecular weight heparin (Low-dose aspirin prophylaxis allowed) due to a history or thrombotic or embolic events, or at a significantly increased risk for thrombosis due to conditions such as carotid stenosis or prosthetic valves.
31. Patients with known contraindication to treatment with C1INH
32. Patients with elevated abnormal platelet function (PLT\>500,000).
33. Known or suspected allergy to rabbits and rabbit-derived products. History of immediate hypersensitivity reactions, including anaphylaxis, to C1 esterase inhibitor preparations.
34. Patients belonging to vulnerable populations: refers to but not limited to children, minors, pregnant women, prisoners, terminally ill patients, comatose, physically and intellectually challenged individuals, institutionalized, visual or hearing impaired, refugees, international research, and educationally disabled healthy volunteers.
35. Diagnosis of reversible Acute Kidney Injury
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Pharming Technologies B.V.
INDUSTRY
University of Wisconsin, Madison
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Luis Fernandez
Role: PRINCIPAL_INVESTIGATOR
University of Wisconsin, Madison
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Wisconsin
Madison, Wisconsin, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Luis Fernandez, MD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010 Sep;11(9):785-97. doi: 10.1038/ni.1923. Epub 2010 Aug 19.
Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol. 2013 Apr 15;190(8):3831-8. doi: 10.4049/jimmunol.1203487.
Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009 Oct;9(10):729-40. doi: 10.1038/nri2620. Epub 2009 Sep 4.
Blom AM, Villoutreix BO, Dahlback B. Complement inhibitor C4b-binding protein-friend or foe in the innate immune system? Mol Immunol. 2004 Apr;40(18):1333-46. doi: 10.1016/j.molimm.2003.12.002.
Jozsi M, Zipfel PF. Factor H family proteins and human diseases. Trends Immunol. 2008 Aug;29(8):380-7. doi: 10.1016/j.it.2008.04.008. Epub 2008 Jul 2.
Davis AE 3rd. Biological effects of C1 inhibitor. Drug News Perspect. 2004 Sep;17(7):439-46. doi: 10.1358/dnp.2004.17.7.863703.
Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med. 2011 Nov 7;17(11):1391-401. doi: 10.1038/nm.2507.
Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008 Apr;8(4):279-89. doi: 10.1038/nri2215. Epub 2008 Mar 14.
Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int. 2004 Aug;66(2):486-91. doi: 10.1111/j.1523-1755.2004.761_3.x.
Diepenhorst GM, van Gulik TM, Hack CE. Complement-mediated ischemia-reperfusion injury: lessons learned from animal and clinical studies. Ann Surg. 2009 Jun;249(6):889-99. doi: 10.1097/SLA.0b013e3181a38f45.
Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821-52. doi: 10.1146/annurev.immunol.23.021704.115835.
McCaughan JA, O'Rourke DM, Courtney AE. The complement cascade in kidney disease: from sideline to center stage. Am J Kidney Dis. 2013 Sep;62(3):604-14. doi: 10.1053/j.ajkd.2012.12.033. Epub 2013 Mar 13.
Gasque P. Complement: a unique innate immune sensor for danger signals. Mol Immunol. 2004 Nov;41(11):1089-98. doi: 10.1016/j.molimm.2004.06.011.
Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y, Stahl GL, Sacks SH. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest. 2000 May;105(10):1363-71. doi: 10.1172/JCI8621.
Weiser MR, Williams JP, Moore FD Jr, Kobzik L, Ma M, Hechtman HB, Carroll MC. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med. 1996 May 1;183(5):2343-8. doi: 10.1084/jem.183.5.2343.
de Vries B, Walter SJ, Peutz-Kootstra CJ, Wolfs TG, van Heurn LW, Buurman WA. The mannose-binding lectin-pathway is involved in complement activation in the course of renal ischemia-reperfusion injury. Am J Pathol. 2004 Nov;165(5):1677-88. doi: 10.1016/S0002-9440(10)63424-4.
Moller-Kristensen M, Wang W, Ruseva M, Thiel S, Nielsen S, Takahashi K, Shi L, Ezekowitz A, Jensenius JC, Gadjeva M. Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys and is implicated in tissue injury. Scand J Immunol. 2005 May;61(5):426-34. doi: 10.1111/j.1365-3083.2005.01591.x.
Schwaeble WJ, Lynch NJ, Clark JE, Marber M, Samani NJ, Ali YM, Dudler T, Parent B, Lhotta K, Wallis R, Farrar CA, Sacks S, Lee H, Zhang M, Iwaki D, Takahashi M, Fujita T, Tedford CE, Stover CM. Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7523-8. doi: 10.1073/pnas.1101748108. Epub 2011 Apr 18.
Castellano G, Melchiorre R, Loverre A, Ditonno P, Montinaro V, Rossini M, Divella C, Battaglia M, Lucarelli G, Annunziata G, Palazzo S, Selvaggi FP, Staffieri F, Crovace A, Daha MR, Mannesse M, van Wetering S, Paolo Schena F, Grandaliano G. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am J Pathol. 2010 Apr;176(4):1648-59. doi: 10.2353/ajpath.2010.090276. Epub 2010 Feb 11.
Berger SP, Roos A, Mallat MJ, Fujita T, de Fijter JW, Daha MR. Association between mannose-binding lectin levels and graft survival in kidney transplantation. Am J Transplant. 2005 Jun;5(6):1361-6. doi: 10.1111/j.1600-6143.2005.00841.x.
Straatsburg IH, Boermeester MA, Wolbink GJ, van Gulik TM, Gouma DJ, Frederiks WM, Hack CE. Complement activation induced by ischemia-reperfusion in humans: a study in patients undergoing partial hepatectomy. J Hepatol. 2000 May;32(5):783-91. doi: 10.1016/s0168-8278(00)80247-0.
Williams JP, Pechet TT, Weiser MR, Reid R, Kobzik L, Moore FD Jr, Carroll MC, Hechtman HB. Intestinal reperfusion injury is mediated by IgM and complement. J Appl Physiol (1985). 1999 Mar;86(3):938-42. doi: 10.1152/jappl.1999.86.3.938.
Jordan JE, Montalto MC, Stahl GL. Inhibition of mannose-binding lectin reduces postischemic myocardial reperfusion injury. Circulation. 2001 Sep 18;104(12):1413-8. doi: 10.1161/hc3601.095578.
Sacks SH. Complement fragments C3a and C5a: the salt and pepper of the immune response. Eur J Immunol. 2010 Mar;40(3):668-70. doi: 10.1002/eji.201040355.
Peng Q, Li K, Smyth LA, Xing G, Wang N, Meader L, Lu B, Sacks SH, Zhou W. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol. 2012 Sep;23(9):1474-85. doi: 10.1681/ASN.2011111072. Epub 2012 Jul 12.
de Vries B, Kohl J, Leclercq WK, Wolfs TG, van Bijnen AA, Heeringa P, Buurman WA. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. J Immunol. 2003 Apr 1;170(7):3883-9. doi: 10.4049/jimmunol.170.7.3883.
Djamali A, Muth BL, Ellis TM, Mohamed M, Fernandez LA, Miller KM, Bellingham JM, Odorico JS, Mezrich JD, Pirsch JD, D'Alessandro TM, Vidyasagar V, Hofmann RM, Torrealba JR, Kaufman DB, Foley DP. Increased C4d in post-reperfusion biopsies and increased donor specific antibodies at one-week post transplant are risk factors for acute rejection in mild to moderately sensitized kidney transplant recipients. Kidney Int. 2013 Jun;83(6):1185-92. doi: 10.1038/ki.2013.44. Epub 2013 Feb 27.
Stegall MD, Diwan T, Raghavaiah S, Cornell LD, Burns J, Dean PG, Cosio FG, Gandhi MJ, Kremers W, Gloor JM. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant. 2011 Nov;11(11):2405-13. doi: 10.1111/j.1600-6143.2011.03757.x. Epub 2011 Sep 22.
Lefaucheur C, Loupy A, Hill GS, Andrade J, Nochy D, Antoine C, Gautreau C, Charron D, Glotz D, Suberbielle-Boissel C. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J Am Soc Nephrol. 2010 Aug;21(8):1398-406. doi: 10.1681/ASN.2009101065. Epub 2010 Jul 15.
Lerut E, Naesens M, Kuypers DR, Vanrenterghem Y, Van Damme B. Subclinical peritubular capillaritis at 3 months is associated with chronic rejection at 1 year. Transplantation. 2007 Jun 15;83(11):1416-22. doi: 10.1097/01.tp.0000266676.10550.70.
Dean PG, Park WD, Cornell LD, Gloor JM, Stegall MD. Intragraft gene expression in positive crossmatch kidney allografts: ongoing inflammation mediates chronic antibody-mediated injury. Am J Transplant. 2012 Jun;12(6):1551-63. doi: 10.1111/j.1600-6143.2011.03964.x. Epub 2012 Feb 15.
Andres A, Marcen R, Valdes F, Plumed JS, Sola R, Errasti P, Lauzurica R, Pallardo L, Bustamante J, Amenabar JJ, Plaza JJ, Gomez E, Grinyo JM, Rengel M, Puig JM, Sanz A, Asensio C, Andres I; NI2A Study Group. A randomized trial of basiliximab with three different patterns of cyclosporin A initiation in renal transplant from expanded criteria donors and at high risk of delayed graft function. Clin Transplant. 2009 Jan-Feb;23(1):23-32. doi: 10.1111/j.1399-0012.2008.00891.x. Epub 2008 Sep 16.
Reddy KS, Stratta RJ, Alloway RR, Lo A, Hodge EE; PIVOT Study Group. The impact of delayed graft function of the kidney on the pancreas allograft in simultaneous kidney-pancreas transplantation. Transplant Proc. 2004 May;36(4):1078-9. doi: 10.1016/j.transproceed.2004.04.052.
Shoskes DA, Cecka JM. Effect of delayed graft function on short- and long-term kidney graft survival. Clin Transpl. 1997:297-303.
Sanfilippo F, Vaughn WK, Spees EK, Lucas BA. The detrimental effects of delayed graft function in cadaver donor renal transplantation. Transplantation. 1984 Dec;38(6):643-8. doi: 10.1097/00007890-198412000-00019.
Shoskes DA, Cecka JM. Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation. 1998 Dec 27;66(12):1697-701. doi: 10.1097/00007890-199812270-00022.
Yokoyama I, Uchida K, Kobayashi T, Tominaga Y, Orihara A, Takagi H. Effect of prolonged delayed graft function on long-term graft outcome in cadaveric kidney transplantation. Clin Transplant. 1994 Apr;8(2 Pt 1):101-6.
Rosenthal JT, Danovitch GM, Wilkinson A, Ettenger RB. The high cost of delayed graft function in cadaveric renal transplantation. Transplantation. 1991 May;51(5):1115-8. No abstract available.
Matas AJ, Gillingham KJ, Elick BA, Dunn DL, Gruessner RW, Payne WD, Sutherland DE, Najarian JS. Risk factors for prolonged hospitalization after kidney transplants. Clin Transplant. 1997 Aug;11(4):259-64.
Floerchinger B, Oberhuber R, Tullius SG. Effects of brain death on organ quality and transplant outcome. Transplant Rev (Orlando). 2012 Apr;26(2):54-9. doi: 10.1016/j.trre.2011.10.001.
Danobeitia JS, Sperger JM, Hanson MS, Park EE, Chlebeck PJ, Roenneburg DA, Sears ML, Connor JX, Schwarznau A, Fernandez LA. Early activation of the inflammatory response in the liver of brain-dead non-human primates. J Surg Res. 2012 Aug;176(2):639-48. doi: 10.1016/j.jss.2011.10.042. Epub 2011 Nov 19.
van der Hoeven JA, Molema G, Ter Horst GJ, Freund RL, Wiersema J, van Schilfgaarde R, Leuvenink HG, Ploeg RJ. Relationship between duration of brain death and hemodynamic (in)stability on progressive dysfunction and increased immunologic activation of donor kidneys. Kidney Int. 2003 Nov;64(5):1874-82. doi: 10.1046/j.1523-1755.2003.00272.x.
Damman J, Schuurs TA, Ploeg RJ, Seelen MA. Complement and renal transplantation: from donor to recipient. Transplantation. 2008 Apr 15;85(7):923-7. doi: 10.1097/TP.0b013e3181683cf5.
Pratt JR, Abe K, Miyazaki M, Zhou W, Sacks SH. In situ localization of C3 synthesis in experimental acute renal allograft rejection. Am J Pathol. 2000 Sep;157(3):825-31. doi: 10.1016/S0002-9440(10)64596-8.
Damman J, Nijboer WN, Schuurs TA, Leuvenink HG, Morariu AM, Tullius SG, van Goor H, Ploeg RJ, Seelen MA. Local renal complement C3 induction by donor brain death is associated with reduced renal allograft function after transplantation. Nephrol Dial Transplant. 2011 Jul;26(7):2345-54. doi: 10.1093/ndt/gfq717. Epub 2010 Dec 2.
Atkinson C, Varela JC, Tomlinson S. Complement-dependent inflammation and injury in a murine model of brain dead donor hearts. Circ Res. 2009 Nov 20;105(11):1094-101. doi: 10.1161/CIRCRESAHA.109.194977. Epub 2009 Oct 8.
Damman J, Hoeger S, Boneschansker L, Theruvath A, Waldherr R, Leuvenink HG, Ploeg RJ, Yard BA, Seelen MA. Targeting complement activation in brain-dead donors improves renal function after transplantation. Transpl Immunol. 2011 May;24(4):233-7. doi: 10.1016/j.trim.2011.03.001. Epub 2011 Apr 1.
Naesens M, Li L, Ying L, Sansanwal P, Sigdel TK, Hsieh SC, Kambham N, Lerut E, Salvatierra O, Butte AJ, Sarwal MM. Expression of complement components differs between kidney allografts from living and deceased donors. J Am Soc Nephrol. 2009 Aug;20(8):1839-51. doi: 10.1681/ASN.2008111145. Epub 2009 May 14.
van Werkhoven MB, Damman J, van Dijk MCRF, Daha MR, de Jong IJ, Leliveld A, Krikke C, Leuvenink HG, van Goor H, van Son WJ, Olinga P, Hillebrands JL, Seelen MAJ. Complement mediated renal inflammation induced by donor brain death: role of renal C5a-C5aR interaction. Am J Transplant. 2013 Apr;13(4):875-882. doi: 10.1111/ajt.12130. Epub 2013 Feb 7.
Blogowski W, Dolegowska B, Salata D, Budkowska M, Domanski L, Starzynska T. Clinical analysis of perioperative complement activity during ischemia/reperfusion injury following renal transplantation. Clin J Am Soc Nephrol. 2012 Nov;7(11):1843-51. doi: 10.2215/CJN.02200312. Epub 2012 Aug 16.
de Vries DK, van der Pol P, van Anken GE, van Gijlswijk DJ, Damman J, Lindeman JH, Reinders ME, Schaapherder AF, Kooten Cv. Acute but transient release of terminal complement complex after reperfusion in clinical kidney transplantation. Transplantation. 2013 Mar 27;95(6):816-20. doi: 10.1097/TP.0b013e31827e31c9.
Davis AE 3rd, Lu F, Mejia P. C1 inhibitor, a multi-functional serine protease inhibitor. Thromb Haemost. 2010 Nov;104(5):886-93. doi: 10.1160/TH10-01-0073. Epub 2010 Aug 30.
Frank MM. Recombinant and plasma-purified human c1 inhibitor for the treatment of hereditary angioedema. World Allergy Organ J. 2010 Sep;3(9 Suppl):S29-33. doi: 10.1097/WOX.0b013e3181f1428d.
Curci C, Castellano G, Stasi A, Divella C, Loverre A, Gigante M, Simone S, Cariello M, Montinaro V, Lucarelli G, Ditonno P, Battaglia M, Crovace A, Staffieri F, Oortwijn B, van Amersfoort E, Gesualdo L, Grandaliano G. Endothelial-to-mesenchymal transition and renal fibrosis in ischaemia/reperfusion injury are mediated by complement anaphylatoxins and Akt pathway. Nephrol Dial Transplant. 2014 Apr;29(4):799-808. doi: 10.1093/ndt/gft516. Epub 2014 Jan 23.
Tillou X, Poirier N, Le Bas-Bernardet S, Hervouet J, Minault D, Renaudin K, Vistoli F, Karam G, Daha M, Soulillou JP, Blancho G. Recombinant human C1-inhibitor prevents acute antibody-mediated rejection in alloimmunized baboons. Kidney Int. 2010 Jul;78(2):152-9. doi: 10.1038/ki.2010.75. Epub 2010 Mar 24.
Sommer W, Tudorache I, Kuhn C, Avsar M, Salman J, Ius F, Gras C, Weber P, Welte T, Gottlieb J, Haverich A, Warnecke G. C1-esterase-inhibitor for primary graft dysfunction in lung transplantation. Transplantation. 2014 Jun 15;97(11):1185-91. doi: 10.1097/TP.0000000000000034.
Feldman HI, Gayner R, Berlin JA, Roth DA, Silibovsky R, Kushner S, Brayman KL, Burns JE, Kobrin SM, Friedman AL, Grossman RA. Delayed function reduces renal allograft survival independent of acute rejection. Nephrol Dial Transplant. 1996 Jul;11(7):1306-13.
Westendorp WH, Leuvenink HG, Ploeg RJ. Brain death induced renal injury. Curr Opin Organ Transplant. 2011 Apr;16(2):151-6. doi: 10.1097/MOT.0b013e328344a5dc.
Kim IK, Bedi DS, Denecke C, Ge X, Tullius SG. Impact of innate and adaptive immunity on rejection and tolerance. Transplantation. 2008 Oct 15;86(7):889-94. doi: 10.1097/TP.0b013e318186ac4a.
Damman J, Daha MR, van Son WJ, Leuvenink HG, Ploeg RJ, Seelen MA. Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury. Am J Transplant. 2011 Apr;11(4):660-9. doi: 10.1111/j.1600-6143.2011.03475.x.
Asgari E, Zhou W, Sacks S. Complement in organ transplantation. Curr Opin Organ Transplant. 2010 Aug;15(4):486-91. doi: 10.1097/MOT.0b013e32833b9cb7.
Rao PS, Schaubel DE, Guidinger MK, Andreoni KA, Wolfe RA, Merion RM, Port FK, Sung RS. A comprehensive risk quantification score for deceased donor kidneys: the kidney donor risk index. Transplantation. 2009 Jul 27;88(2):231-6. doi: 10.1097/TP.0b013e3181ac620b.
Merion RM, Ashby VB, Wolfe RA, Distant DA, Hulbert-Shearon TE, Metzger RA, Ojo AO, Port FK. Deceased-donor characteristics and the survival benefit of kidney transplantation. JAMA. 2005 Dec 7;294(21):2726-33. doi: 10.1001/jama.294.21.2726.
Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, Halloran PF, Baldwin W, Banfi G, Collins AB, Cosio F, David DS, Drachenberg C, Einecke G, Fogo AB, Gibson IW, Glotz D, Iskandar SS, Kraus E, Lerut E, Mannon RB, Mihatsch M, Nankivell BJ, Nickeleit V, Papadimitriou JC, Randhawa P, Regele H, Renaudin K, Roberts I, Seron D, Smith RN, Valente M. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008 Apr;8(4):753-60. doi: 10.1111/j.1600-6143.2008.02159.x. Epub 2008 Feb 19.
Kaminska D, Koscielska-Kasprzak K, Drulis-Fajdasz D, Halon A, Polak W, Chudoba P, Janczak D, Mazanowska O, Patrzalek D, Klinger M. Kidney ischemic injury genes expressed after donor brain death are predictive for the outcome of kidney transplantation. Transplant Proc. 2011 Oct;43(8):2891-4. doi: 10.1016/j.transproceed.2011.08.062.
Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P. Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant. 2006 Jul;6(7):1639-45. doi: 10.1111/j.1600-6143.2006.01352.x.
Waikar SS, Liu KD, Chertow GM. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol. 2008 May;3(3):844-61. doi: 10.2215/CJN.05191107. Epub 2008 Mar 12.
Damman J, Kok JL, Snieder H, Leuvenink HG, van Goor H, Hillebrands JL, van Dijk MC, Hepkema BG, Reznichenko A, van den Born J, de Borst MH, Bakker SJ, Navis GJ, Ploeg RJ, Seelen MA. Lectin complement pathway gene profile of the donor and recipient does not influence graft outcome after kidney transplantation. Mol Immunol. 2012 Feb;50(1-2):1-8. doi: 10.1016/j.molimm.2011.11.009. Epub 2011 Dec 15.
Heijnen BH, Straatsburg IH, Padilla ND, Van Mierlo GJ, Hack CE, Van Gulik TM. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model. Clin Exp Immunol. 2006 Jan;143(1):15-23. doi: 10.1111/j.1365-2249.2005.02958.x.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
A539742
Identifier Type: OTHER
Identifier Source: secondary_id
SMPH/SURGERY/TRANSPLANT
Identifier Type: OTHER
Identifier Source: secondary_id
Protocol Version 12/26/2019
Identifier Type: OTHER
Identifier Source: secondary_id
2017-1325
Identifier Type: -
Identifier Source: org_study_id