Microbiome and Volatile Organic Compounds in Patients With CDH
NCT ID: NCT03787160
Last Updated: 2020-04-28
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
18 participants
INTERVENTIONAL
2018-03-22
2019-10-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Research into changes in the microbiome and volatile organic compounds (VOCs) could provide new insights into the underlying mechanisms and therapeutic measures of this disease.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Use of Gastrografin to Help Alleviate Bowel Obstruction in Gastroschisis Patients.
NCT03334578
Diagnosis of Functional Defecation Disorders in Childhood
NCT00230360
Rectal and Oral Omeprazole Treatment of Reflux Disease in Infants.
NCT00226044
Methylnaltrexone Use for Opioid-induced Postoperative Constipation
NCT01773096
Mechanisms and Management of Infant Dysphagia
NCT02583360
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Study design: This is a prospective study in children who were treated surgically in early childhood for congenital diaphragmatic hernia. After an initial determination of the microbiome and the composition of volatile organic substances in breathing air and feces and a lung function measurement as well as sports medical examination, the study group receive a probiotic (Omnibiotics 6, obtained from the Allergosan Institute, food supplements) for 3 months. The microbiome and VOCs are observed afterwards. The subjects are divided according to age, gender, care with or without patch. In addition, a comparison with a control group that does not show any chronic or acute lung disease is made according to age and gender of the test group. In addition, in cooperation with the Division of Pediatric Pulmonology and Allergology of the Department of Pediatrics and Adolescent Medicine at the Medical University of Graz, the lung function of former diaphragmatic hernias patients (before administration of probiotics) and a control group is to be measured. In cooperation with the Medical Center of Sports Medicine the investigator also carry out a sports medical examination including ergospirometry. The duration of the study is set at 12 months.
Study participants: Study group: Children between 6-16 years of age, who are enrolled at the Department of Pediatric and Adolescent Surgery at the Medical University of Graz between 2000 and 2010 due to a congenital diaphragmatic hernia have received an operative closure with or without patch. Control group: Children between 6-16 years who do not have pulmonary disease. Recruited from the outpatient area at the Department of Pediatric and Adolescent Surgery at the Medical University of Graz. The aim is to establish contact with the above-mentioned patients and their parents and to achieve willingness to participate in this study by means of an information letter. The control group should come from the area of outpatient area in the Department of Pediatric and Adolescent Surgery, Medical University of Graz, after appropriate information and possible consent.
Microbiome analysis before treatment with a probiotic: Collection of sample material - in this case sputum - from the deep respiratory tract by induced sputum after inhalation of hypersaline saline solution with resulting provocation of cough. The sample is then deep-frozen. The Microbiome measurement is performed as a comparative 16S rDNA-based profile via chip-based next-generation sequencing as already published, analyzed using SnowMAn, Qiime and MOTHUR as well as the own "R"-based software. A sequencing depth of 5,000-10,000 reads per sample.
VOCs analysis before treatment with a probiotic: I) Taking of the exhaled gas samples: One sample from inspiration and two from expiration is taken from each subject (n = 3). For sampling investigator use an automatic sampling system that is directly connected to a capnometer. This system contains a so-called needle-trap microextraction (NTME) as a microextraction technique and meets the requirements of an optimal sampling on currently technically highest level. The exhaled gas samples obtained in this way are then sent to our cooperation partner, to the Institute for Breathing Gas Analysis at the University of Rostock for analysis. II) Analysis of exhaled gas samples: There, the exhaled gas samples are thermally transferred into the inert carrier gas stream (He) in an injector of a chromatograph. The substances are assigned according to their retention time in the chromatogram and their mass spectrum. Unknown Compounds in the exhaled gas are identified by comparison with a reference database based on the mass spectrum. Vital and laboratory data, as well as microbiological information, are taken from the patients' findings. III) Identification of biomarkers of exhaled gas samples: From the results of the patient measurements, those substances and substance concentrations are determined which are specific for study group 1 and group 2, i.e. compounds which are not present in the comparison group or only in significantly lower or higher concentrations. The selected volatile markers, as well as any volatile contaminants that may have been detected in the environment, are stored in an analytical reference database and, after elimination of the contamination, bundled into possibly disease-specific marker profiles. IV) Analysis of fecal samples: The fecal samples are also sent to the Institute for Breathing Gas Analysis of the University of Rostock for analysis and analyzed there after appropriate preconcentration by solid phase microextraction (SPME). V) Identification of biomarkers of fecal samples: This is done in analogy to the exhaled gas samples.
Lung function measurement before treatment with a probiotic: Measurement of lung function using spirometry and body plethysmography (Fa Jäger spirometer and body plethysmograph) and nitrogen washout process (N2-multiple breath washout, System Exhalyzer D and Spiroware 3.1, Eco Medics AG, Duernten, Switzerland). Spirometry and body plethysmography are performed according to published ERS/ATS Standards. The "multiple breath washout" method is performed under resting breathing and detects the Ventilation (in)homogeneity at the level of the functional residual capacity (= FRC = that lung volume that is still in the lungs after a calm spontaneous exhalation is left behind). The system consists of a flow meter, a fast analyzing gas measuring system, a gas administration system and the corresponding Computer analysis software. As a "foreign gas" it will be use 78% of the gas in air occurring nitrogen (N2). A flow-volume measurement is performed via an Ultrasonic flowmeter performed directly in the inhalation and exhalation flow of the test person/patient and via a laser O2 sensor using the side current measurement method and an infrared CO2 sensor in the main current measuring procedure (= directly in the patient's respiratory flow) the respective gas concentration. The N2 component is then indirectly measured via the O2 and CO2 concentration (N2 = 1 - O2 - CO2). During calm spontaneous breathing, the Patient on a snorkel mouthpiece via a bacterial filter through the flowmeter 100% oxygen and thus "washes" N2 out ("N2-multiple breath washout"). In doing so, the flow-volume curve of spontaneous breathing "online" is displayed on the screen and the measurement at Reaching a 1/40 (= 2.5%) of the initial nitrogen concentration is completed. After that, wait the subject is safe in the length of twice the duration of the measurement around the oxygen of exhaling. This is followed by the next measurement. A total of 3 measurements whose mean value serves as a result. The so-called "lung clearance index", which indicates the number of functional residual capacity lung volumes, which can be used to reduce the initial nitrogen concentration to a 1/40 after oxygenation was required. (LCI = quotient between exhaled volume and FRC). It expresses how long it takes for the inhaled gas (in our case the physiologically occurring nitrogen in the air) through inhalation of 100% oxygen. For healthy persons, this value is on average 7 and is significantly higher in lung patients. Further measuring parameters, which makes a statement about the peripheral airways proximal to the terminal bronchioles on the one hand and via the more distal azine airways on the other hand are calculated.
Sports medical examination: To exclude contraindications for ergometry, a 12-channel resting ECG and a resting blood pressure measurement (CombynTM Function \& Spaces ECG, Academic Technologies) are performed at the beginning of the examination. After the anthropometric data (height, weight, BMI) have been collected, the muscle mass and fat mass are determined by multi-frequency impedance measurement in six body segments (CombynTM Function \& Spaces ECG, Academic Technologies). The lung function is measured by means of small spirometry at rest and after exercise (Spirometer Oxycon Pro, Reiner). In order to determine cardiopulmonary performance, ergospirometry is performed on a bicycle (Excalibur Sport ergometer, Lode company; Oxycon Pro spiroergometry unit, Reiner company) with a gradual increase in stress up to subjective exhaustion. The evaluation of these data allows conclusions to be drawn about the performance-limiting system (cardiovascular system, lungs, musculature) in addition to the determination of aerobic performance.
Microbiome/VOCs analysis after treatment with a probiotic: After sampling for microbiome and VOC analysis and carrying out lung function measurements and sports medical examination, the participants in the study group will take a probiotic (Omnibiotic 6, purchased from the Allergosan Institute, dietary supplement) for a period of 3 months. Immediately afterwards and another month later, measurements of the pulmonary microbiome and the VOCs in the breath are taken.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
BASIC_SCIENCE
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
CDH Group
10 patients after surgical closure of CDH will undergo VOC profile analysis (2 breath samples) (initial VOC), fecal sampling for 16S rDNA based pyrosequencing (initial fecal microbiome) and deep induced sputum sampling for 16S rDNA pyrosequencing (initial pulmonary microbiome), bicycle spiroergometry to determine the maximum oxygen uptake (maximum oxygen uptake), body plethysmography, spirometry and N2-multiple breath washout testing to determine the functional residual capacity (functional residual capacity). Thereafter patients will receive probiotic treatment with OmniBiotic6 (R) (Allergosan, Graz, Austria) 1 sachet daily for 3 months (probiotic treatment). Three months after discontinuing probiotic treatment VOC testing (VOC probiotics), fecal microbiome sampling (fecal microbiome probiotics) and deep induced sputum testing (pulmonary microbiome probiotics) will be repeated and compared to the results of the initial tests.
initial VOC
Difference in VOC profile between patients with CDH and healthy controls (2 samples per patient will be obtained after obtaining informed consent).
initial fecal microbiome
Difference of alpha and beta diversity and relative fecal bacterial abundance between patients with CDH and healthy controls (1 stool sample will be taken per patient after obtaining informed consent)
initial pulmonary microbiome
Difference of alpha and beta diversity and relative pulmonary bacterial abundance between patients with CDH and healthy controls (1 deep induced sputum sample will be taken per patient after obtaining informed consent)
Maximum oxygen uptake
Comparison of the maximum oxygen uptake (corrected for body weight and gender) as determined by bicycle spiroergometry between patients with CDH and healthy controls
Functional residual capacity
FRC will be determined by spirometry, bodyplethysmography and N2-breath wash out method. FRC will be compared between patients after CDH and healthy controls.
Probiotic treatment
CDH patients will receive OmniBiotic 6(R) (Allergosan, Graz, Austria) probiotic supplementation 1 sachet daily for 3 months.
VOC probiotic
Determination of the VOC profile 3 months after discontinuing probiotic treatment. Comparison to the profiles before the treatment.
Fecal microbiome probiotic
Determination of the fecal microbiome from 1 sample per patient (alpha and beta diversity, relative bacterial abundance at the genus level) 3 months after discontinuing probiotic treatment. Comparison to the profiles before the treatment.
Pulmonary microbiome probiotic
Determination of the fecal microbiome from 1 deep induced sputum sample per patient (alpha and beta diversity, relative bacterial abundance at the genus level) 3 months after discontinuing probiotic treatment. Comparison to the profiles before the treatment.
Control Group
10 healthy controls (age and sex matched) will undergo VOC profile analysis (2 breath samples) (initial VOC), fecal sampling for 16S rDNA based pyrosequencing (initial fecal microbiome) and deep induced sputum sampling for 16S rDNA pyrosequencing (initial pulmonary microbiome), bicycle spiroergometry to determine the maximum oxygen uptake (maximum oxygen uptake), body plethysmography, spirometry and N2-multiple breath washout testing to determine the functional residual capacity (functional residual capacity).
initial VOC
Difference in VOC profile between patients with CDH and healthy controls (2 samples per patient will be obtained after obtaining informed consent).
initial fecal microbiome
Difference of alpha and beta diversity and relative fecal bacterial abundance between patients with CDH and healthy controls (1 stool sample will be taken per patient after obtaining informed consent)
initial pulmonary microbiome
Difference of alpha and beta diversity and relative pulmonary bacterial abundance between patients with CDH and healthy controls (1 deep induced sputum sample will be taken per patient after obtaining informed consent)
Maximum oxygen uptake
Comparison of the maximum oxygen uptake (corrected for body weight and gender) as determined by bicycle spiroergometry between patients with CDH and healthy controls
Functional residual capacity
FRC will be determined by spirometry, bodyplethysmography and N2-breath wash out method. FRC will be compared between patients after CDH and healthy controls.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
initial VOC
Difference in VOC profile between patients with CDH and healthy controls (2 samples per patient will be obtained after obtaining informed consent).
initial fecal microbiome
Difference of alpha and beta diversity and relative fecal bacterial abundance between patients with CDH and healthy controls (1 stool sample will be taken per patient after obtaining informed consent)
initial pulmonary microbiome
Difference of alpha and beta diversity and relative pulmonary bacterial abundance between patients with CDH and healthy controls (1 deep induced sputum sample will be taken per patient after obtaining informed consent)
Maximum oxygen uptake
Comparison of the maximum oxygen uptake (corrected for body weight and gender) as determined by bicycle spiroergometry between patients with CDH and healthy controls
Functional residual capacity
FRC will be determined by spirometry, bodyplethysmography and N2-breath wash out method. FRC will be compared between patients after CDH and healthy controls.
Probiotic treatment
CDH patients will receive OmniBiotic 6(R) (Allergosan, Graz, Austria) probiotic supplementation 1 sachet daily for 3 months.
VOC probiotic
Determination of the VOC profile 3 months after discontinuing probiotic treatment. Comparison to the profiles before the treatment.
Fecal microbiome probiotic
Determination of the fecal microbiome from 1 sample per patient (alpha and beta diversity, relative bacterial abundance at the genus level) 3 months after discontinuing probiotic treatment. Comparison to the profiles before the treatment.
Pulmonary microbiome probiotic
Determination of the fecal microbiome from 1 deep induced sputum sample per patient (alpha and beta diversity, relative bacterial abundance at the genus level) 3 months after discontinuing probiotic treatment. Comparison to the profiles before the treatment.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age 0-6 months at time of CDH-OP (except control group)
* reliable diagnosis of congenital diaphragmatic hernia (except control group)
* surgical occlusion with patch (except control group)
* surgical occlusion without patch (except control group)
* given approval
Exclusion Criteria
* Infection within 4 weeks before the test date
* unaccepted consent
6 Years
16 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Rostock
OTHER
Medical University of Graz
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Warncke Gert, MD
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Till Holger, MD
Role: STUDY_DIRECTOR
Department of Pediatric and Adolescent Surgery, Medical University of Graz
Ernst Eber, MD
Role: PRINCIPAL_INVESTIGATOR
Department of Pediatric and Adolescent Medicine, Medical University of Graz
Gert Warncke, MD
Role: PRINCIPAL_INVESTIGATOR
Department of Pediatric and Adolescent Surgery, Medical University of Graz
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Department of Department of Pediatric and Adolescent Surgery, Medical University of Graz
Graz, Styria, Austria
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Kotecha S, Barbato A, Bush A, Claus F, Davenport M, Delacourt C, Deprest J, Eber E, Frenckner B, Greenough A, Nicholson AG, Anton-Pacheco JL, Midulla F. Congenital diaphragmatic hernia. Eur Respir J. 2012 Apr;39(4):820-9. doi: 10.1183/09031936.00066511. Epub 2011 Oct 27.
Tracy M, Cogen J, Hoffman LR. The pediatric microbiome and the lung. Curr Opin Pediatr. 2015 Jun;27(3):348-55. doi: 10.1097/MOP.0000000000000212.
Caverly LJ, Zhao J, LiPuma JJ. Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection. Pediatr Pulmonol. 2015 Oct;50 Suppl 40:S31-8. doi: 10.1002/ppul.23243.
Bergmann A, Trefz P, Fischer S, Klepik K, Walter G, Steffens M, Ziller M, Schubert JK, Reinhold P, Kohler H, Miekisch W. In Vivo Volatile Organic Compound Signatures of Mycobacterium avium subsp. paratuberculosis. PLoS One. 2015 Apr 27;10(4):e0123980. doi: 10.1371/journal.pone.0123980. eCollection 2015.
Fischer S, Trefz P, Bergmann A, Steffens M, Ziller M, Miekisch W, Schubert JS, Kohler H, Reinhold P. Physiological variability in volatile organic compounds (VOCs) in exhaled breath and released from faeces due to nutrition and somatic growth in a standardized caprine animal model. J Breath Res. 2015 May 14;9(2):027108. doi: 10.1088/1752-7155/9/2/027108.
Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H, Camara JS. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites. 2015 Jan 9;5(1):3-55. doi: 10.3390/metabo5010003.
Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res. 2014 Sep;8(3):034001. doi: 10.1088/1752-7155/8/3/034001. Epub 2014 Jun 19.
Barker M, Hengst M, Schmid J, Buers HJ, Mittermaier B, Klemp D, Koppmann R. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur Respir J. 2006 May;27(5):929-36. doi: 10.1183/09031936.06.00085105. Epub 2006 Feb 2.
Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of breath analysis--focus on volatile organic compounds. Clin Chim Acta. 2004 Sep;347(1-2):25-39. doi: 10.1016/j.cccn.2004.04.023.
Forton J. Induced sputum in young healthy children with cystic fibrosis. Paediatr Respir Rev. 2015 Oct;16 Suppl 1:6-8. doi: 10.1016/j.prrv.2015.07.007. Epub 2015 Sep 26.
Planting NS, Visser GL, Nicol MP, Workman L, Isaacs W, Zar HJ. Safety and efficacy of induced sputum in young children hospitalised with suspected pulmonary tuberculosis. Int J Tuberc Lung Dis. 2014 Jan;18(1):8-12. doi: 10.5588/ijtld.13.0132.
Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol. 2013 Feb;131(2):346-52.e1-3. doi: 10.1016/j.jaci.2012.11.013. Epub 2012 Dec 23.
Gorkiewicz G, Thallinger GG, Trajanoski S, Lackner S, Stocker G, Hinterleitner T, Gully C, Hogenauer C. Alterations in the colonic microbiota in response to osmotic diarrhea. PLoS One. 2013;8(2):e55817. doi: 10.1371/journal.pone.0055817. Epub 2013 Feb 8.
Trefz P, Rosner L, Hein D, Schubert JK, Miekisch W. Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis. Anal Bioanal Chem. 2013 Apr;405(10):3105-15. doi: 10.1007/s00216-013-6781-9. Epub 2013 Feb 7.
Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2005 Aug;26(2):319-38. doi: 10.1183/09031936.05.00034805. No abstract available.
Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller MR, Navajas D, Pellegrino R, Viegi G. Standardisation of the measurement of lung volumes. Eur Respir J. 2005 Sep;26(3):511-22. doi: 10.1183/09031936.05.00035005. No abstract available.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
28-528 ex 15/16
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.