Artificial Intelligence Identifying Polyps in Real-world Colonoscopy
NCT ID: NCT03761771
Last Updated: 2018-12-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
209 participants
OBSERVATIONAL
2018-11-01
2018-12-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
colonoscopy withdrawal with the ADS monitoring
The ADS automatically initiated once the ileocecal valve was pictured by the colonoscopist or the colonoscopist recorded any image of colon during the insertion. When colonoscopists withdrew the colonoscopies and inspect the colons, the video streaming of colonoscopies was real-time switched to the ADS, which made it feasible to identify and classify lesions in real time.
colonoscopy withdrawal with the ADS monitoring
During the testing of trained ADS, when the system doubts colonic lesions from the input data of the test images, a rectangular frame was displayed in the endoscopic image to surround the lesion. If the system confirmed it as the colonic lesions, a sound of reminder will be played and the types of lesions (non-adenomatous polyps, adenomatous polyps and colorectal cancers) will be classified by the system. We adopted several standards to define the identification and classification of colonic lesions: 1) when the system identified and confirmed any lesion in the images of no polyps or cancers, the results were judged to be false-positive. 2) when the system both confirmed and correctly localized the lesions in images (IoU \> 0.3), the results were judged to be true-positive. 3) when the system did not confirm or correctly localize the lesions, the results were judged as false-negative. 4) when system confirmed no lesions in the normal images, the results were judged to be true-negative.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
colonoscopy withdrawal with the ADS monitoring
During the testing of trained ADS, when the system doubts colonic lesions from the input data of the test images, a rectangular frame was displayed in the endoscopic image to surround the lesion. If the system confirmed it as the colonic lesions, a sound of reminder will be played and the types of lesions (non-adenomatous polyps, adenomatous polyps and colorectal cancers) will be classified by the system. We adopted several standards to define the identification and classification of colonic lesions: 1) when the system identified and confirmed any lesion in the images of no polyps or cancers, the results were judged to be false-positive. 2) when the system both confirmed and correctly localized the lesions in images (IoU \> 0.3), the results were judged to be true-positive. 3) when the system did not confirm or correctly localize the lesions, the results were judged as false-negative. 4) when system confirmed no lesions in the normal images, the results were judged to be true-negative.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* patients receiving surveillance colonoscopy
* patients receiving diagnostic colonoscopy
Exclusion Criteria
* patients with poor bowel preparation
* patients with failed cecal intubation
* patients with colonic resection
* patients with inflammatory bowel diseases
* patients with polyposis
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Zhaoshen Li
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Zhaoshen Li
Director of Gastroenterology Dept and Digestive Endoscopy Center
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Changhai Hospital, Second Military Medical University
Shanghai, , China
Changhai Hospital
Shanghai, , China
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Byrne MF, Chapados N, Soudan F, Oertel C, Linares Perez M, Kelly R, Iqbal N, Chandelier F, Rex DK. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019 Jan;68(1):94-100. doi: 10.1136/gutjnl-2017-314547. Epub 2017 Oct 24.
Wang Z, Meng Q, Wang S, Li Z, Bai Y, Wang D. Deep learning-based endoscopic image recognition for detection of early gastric cancer: a Chinese perspective. Gastrointest Endosc. 2018 Jul;88(1):198-199. doi: 10.1016/j.gie.2018.01.029. No abstract available.
Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, Baldi P. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology. 2018 Oct;155(4):1069-1078.e8. doi: 10.1053/j.gastro.2018.06.037. Epub 2018 Jun 18.
Wang Z, Zhao S, Bai Y. Artificial Intelligence as a Third Eye in Lesion Detection by Endoscopy. Clin Gastroenterol Hepatol. 2018 Sep;16(9):1537. doi: 10.1016/j.cgh.2018.04.032. No abstract available.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
AI-1
Identifier Type: -
Identifier Source: org_study_id