Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
90 participants
INTERVENTIONAL
2020-09-30
2023-11-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Placebo Controlled Study of Preladenant in Participants With Moderate to Severe Parkinson's Disease (P07037)
NCT01227265
Effects of a Dopamine Agonist on Pharmacodynamics of Levodopa in Parkinson's Disease
NCT00666653
Study Comparing Intravenous and Subcutaneous Infudopa With Intestinal Duodopa in Patients With Parkinson's Disease
NCT03419806
Different Dyskinesias in Parkinson's Disease and Their Relation to Levodopa Pharmacokinetics
NCT00888186
A Dose Finding Study of Preladenant (SCH 420814) for the Treatment of Parkinson's Disease (PD) in Japanese Patients (P06402)
NCT01294800
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Hence, the aim of the present work is to re-assess the impact of dopaminergic medications on inhibitory control on Parkinson's patients using a reaching version of the stop signal task (e.g. 4, 15, 16, 17, 18) taking the disease duration in consideration. To this aim, the investigators will compare the performance in the stop signal task in early-stage versus moderate-to-advanced stages Parkinson's patients both in ON and in OFF medication. Finally, to have a baseline measure of inhibitory control the investigators will compare patients' performances with those of age-matched subjects.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
FACTORIAL
Healthy controls will perform the stop signal task and the go-only task in the same day. The order of administration will be counterbalanced.
BASIC_SCIENCE
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
PD patients H&Y=1.5-2 Medications ON
Idiopathic Parkinson's patient's with Hoehn and Yahr score of 1.5- 2 i.e. in an early stage of the disease, under stable treatment with the administration of L-dopa and dopamine agonists. Patients will not present severe sensory deficits or any other neurological disease besides PD, as will be assessed by a standard neurological examination, and they will be all right-handed as will be assessed by the Edinburgh handedness inventory. Age range: 40-70
PD patients H&Y=1.5-2 Medications ON
Parkinson's patients will be allowed to the first-morning dose of levodopa medicament (levodopa, dopamine agonists, anticholinergic drugs, or a combination of levodopa and an anticholinergic drug) which normally allowed the patient to attain the best control of symptoms one hour before being tested (19). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients.
PD patients H&Y=3 Medications ON
Parkinson's patient's with Hoehn and Yahr score of 3, i.e. in moderate-to-advanced stages of the disease under stable treatment with the administration of L-dopa and dopamine agonists. Patients will not present severe sensory deficits or any other neurological disease besides PD, as will be assessed by a standard neurological examination, and they will be all right-handed as will be assessed by the Edinburgh handedness inventory. Age range: 40-70
PD patients H&Y=3 Medications ON
Parkinson's patients will be allowed to the first-morning dose of levodopa medicament (levodopa, dopamine agonists, anticholinergic drugs, or a combination of levodopa and an anticholinergic drug) which normally allowed the patient to attain the best control of symptoms one hour before being tested (19). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients.
PD patients H&Y=1.5-2 Medications OFF
Same as above described
PD patients H&Y=1.5-2 Medications OFF
Parkinson's patients will not take medications overnight prior to the study (20). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients. This intervention will be given on a different day with respect to the Medication ON intervention. The order of intervention will be counterbalanced across subjects
PD patients H&Y=3 Medications OFF
Same as above described
PD patients H&Y=3 Medications OFF
Parkinson's patients will not take medications overnight prior to the study (20). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients. This intervention will be given on a different day with respect to the Medication ON intervention. The order of intervention will be counterbalanced across subjects
Healthy age-matched controls
Healthy controls. Right-handed healthy subjects (it will be assessed by the Edinburgh handedness inventory) with normal or corrected-to-normal vision, without a history of neurological diseases. Age range: 40-70.
Healthy age-matched controls
Healthy controls will perform the stop signal task and the go-only task in the same day. The order of administration will be counterbalanced.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
PD patients H&Y=1.5-2 Medications ON
Parkinson's patients will be allowed to the first-morning dose of levodopa medicament (levodopa, dopamine agonists, anticholinergic drugs, or a combination of levodopa and an anticholinergic drug) which normally allowed the patient to attain the best control of symptoms one hour before being tested (19). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients.
PD patients H&Y=1.5-2 Medications OFF
Parkinson's patients will not take medications overnight prior to the study (20). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients. This intervention will be given on a different day with respect to the Medication ON intervention. The order of intervention will be counterbalanced across subjects
Healthy age-matched controls
Healthy controls will perform the stop signal task and the go-only task in the same day. The order of administration will be counterbalanced.
PD patients H&Y=3 Medications OFF
Parkinson's patients will not take medications overnight prior to the study (20). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients. This intervention will be given on a different day with respect to the Medication ON intervention. The order of intervention will be counterbalanced across subjects
PD patients H&Y=3 Medications ON
Parkinson's patients will be allowed to the first-morning dose of levodopa medicament (levodopa, dopamine agonists, anticholinergic drugs, or a combination of levodopa and an anticholinergic drug) which normally allowed the patient to attain the best control of symptoms one hour before being tested (19). Patients will perform both the stop-signal task and the go-only task. Experimental conditions will be counterbalanced across patients.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Being in stable treatment with the administration of L-dopa and dopamine agonists (i.e. not having motor fluctuations and/or dyskinesia)
3. Having a Hoehn \& Yahr score between 1.5 and 3
Exclusion Criteria
2. Presence of overt signs of dementia (a. mini-mental state examination, MMSE must be ≥24; b. intelligence quotient ≥75).
3. Comorbidity with other psychiatric disorders that might interfere with task execution (i.e. attentional disorders).
4. Presence of severe tremor or rigidity of the right arm in the OFF medication state.
40 Years
70 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Giovanni Mirabella
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Giovanni Mirabella
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
IRCSS Neuromed Hospital
Pozzilli, Isernia, Italy
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Mirabella G. Should I stay or should I go? Conceptual underpinnings of goal-directed actions. Front Syst Neurosci. 2014 Nov 3;8:206. doi: 10.3389/fnsys.2014.00206. eCollection 2014.
Mirabella G, Lebedev Mcapital A, Cyrillic. Interfacing to the brain's motor decisions. J Neurophysiol. 2017 Mar 1;117(3):1305-1319. doi: 10.1152/jn.00051.2016. Epub 2016 Dec 21.
Gauggel S, Rieger M, Feghoff TA. Inhibition of ongoing responses in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry. 2004 Apr;75(4):539-44. doi: 10.1136/jnnp.2003.016469.
Mirabella G, Fragola M, Giannini G, Modugno N, Lakens D. Inhibitory control is not lateralized in Parkinson's patients. Neuropsychologia. 2017 Jul 28;102:177-189. doi: 10.1016/j.neuropsychologia.2017.06.025. Epub 2017 Jun 22.
Obeso I, Wilkinson L, Jahanshahi M. Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson's disease. Exp Brain Res. 2011 Sep;213(4):435-45. doi: 10.1007/s00221-011-2793-x. Epub 2011 Jul 28.
Claassen DO, van den Wildenberg WP, Harrison MB, van Wouwe NC, Kanoff K, Neimat JS, Wylie SA. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors. Pharmacol Biochem Behav. 2015 Feb;129:19-25. doi: 10.1016/j.pbb.2014.11.017. Epub 2014 Nov 29.
George JS, Strunk J, Mak-McCully R, Houser M, Poizner H, Aron AR. Dopaminergic therapy in Parkinson's disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. Neuroimage Clin. 2013 Aug 8;3:261-70. doi: 10.1016/j.nicl.2013.07.013. eCollection 2013.
Wylie SA, van Wouwe NC, Godfrey SG, Bissett PG, Logan GD, Kanoff KE, Claassen DO, Neimat JS, van den Wildenberg WPM. Dopaminergic medication shifts the balance between going and stopping in Parkinson's disease. Neuropsychologia. 2018 Jan 31;109:262-269. doi: 10.1016/j.neuropsychologia.2017.12.032. Epub 2017 Dec 19.
Ghahremani DG, Lee B, Robertson CL, Tabibnia G, Morgan AT, De Shetler N, Brown AK, Monterosso JR, Aron AR, Mandelkern MA, Poldrack RA, London ED. Striatal dopamine D(2)/D(3) receptors mediate response inhibition and related activity in frontostriatal neural circuitry in humans. J Neurosci. 2012 May 23;32(21):7316-24. doi: 10.1523/JNEUROSCI.4284-11.2012.
Robertson CL, Ishibashi K, Mandelkern MA, Brown AK, Ghahremani DG, Sabb F, Bilder R, Cannon T, Borg J, London ED. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects. J Neurosci. 2015 Apr 15;35(15):5990-7. doi: 10.1523/JNEUROSCI.4850-14.2015.
Albrecht DS, Kareken DA, Christian BT, Dzemidzic M, Yoder KK. Cortical dopamine release during a behavioral response inhibition task. Synapse. 2014 Jun;68(6):266-74. doi: 10.1002/syn.21736. Epub 2014 Feb 28.
Costa A, Peppe A, Mazzu I, Longarzo M, Caltagirone C, Carlesimo GA. Dopamine treatment and cognitive functioning in individuals with Parkinson's disease: the "cognitive flexibility" hypothesis seems to work. Behav Neurol. 2014;2014:260896. doi: 10.1155/2014/260896. Epub 2014 Jan 30.
van Wouwe NC, Kanoff KE, Claassen DO, Spears CA, Neimat J, van den Wildenberg WP, Wylie SA. Dissociable Effects of Dopamine on the Initial Capture and the Reactive Inhibition of Impulsive Actions in Parkinson's Disease. J Cogn Neurosci. 2016 May;28(5):710-23. doi: 10.1162/jocn_a_00930. Epub 2016 Feb 2.
Manza P, Amandola M, Tatineni V, Li CR, Leung HC. Response inhibition in Parkinson's disease: a meta-analysis of dopaminergic medication and disease duration effects. NPJ Parkinsons Dis. 2017 Jul 7;3:23. doi: 10.1038/s41531-017-0024-2. eCollection 2017.
Mirabella G, Iaconelli S, Modugno N, Giannini G, Lena F, Cantore G. Stimulation of subthalamic nuclei restores a near normal planning strategy in Parkinson's patients. PLoS One. 2013 May 3;8(5):e62793. doi: 10.1371/journal.pone.0062793. Print 2013.
Mirabella G, Iaconelli S, Romanelli P, Modugno N, Lena F, Manfredi M, Cantore G. Deep brain stimulation of subthalamic nuclei affects arm response inhibition in Parkinson's patients. Cereb Cortex. 2012 May;22(5):1124-32. doi: 10.1093/cercor/bhr187. Epub 2011 Aug 1.
Mirabella G, Pani P, Ferraina S. Context influences on the preparation and execution of reaching movements. Cogn Neuropsychol. 2008 Oct-Dec;25(7-8):996-1010. doi: 10.1080/02643290802003216.
Mirabella G, Pani P, Ferraina S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol. 2011 Sep;106(3):1454-66. doi: 10.1152/jn.00995.2010. Epub 2011 Jun 22.
Mirabella G, De Vita P, Fragola M, Rampelli S, Lena F, Dilettuso F, Iacopini M, d'Avella R, Borgese MC, Mazzotta S, Lanni D, Grano M, Lubrani S, Modugno N. Theatre Is a Valid Add-On Therapeutic Intervention for Emotional Rehabilitation of Parkinson's Disease Patients. Parkinsons Dis. 2017;2017:7436725. doi: 10.1155/2017/7436725. Epub 2017 Nov 22.
Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, Albanese A. Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease. Neurology. 1999 Jul 13;53(1):85-90. doi: 10.1212/wnl.53.1.85.
Mirabella G, Pani P, Pare M, Ferraina S. Inhibitory control of reaching movements in humans. Exp Brain Res. 2006 Sep;174(2):240-55. doi: 10.1007/s00221-006-0456-0. Epub 2006 Apr 25.
Logan GD, Cowan WB, Davis KA. On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform. 1984 Apr;10(2):276-91. doi: 10.1037//0096-1523.10.2.276.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
GMirab_01
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.