Development of a Novel Convolution Neural Network for Arrhythmia Classification
NCT ID: NCT03662802
Last Updated: 2020-11-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
25458 participants
OBSERVATIONAL
2018-10-01
2020-10-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
OTHER
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
ECG Data
Coded data including; wavelengths, amplitude, intervals, timing, frequence
Neural Network Classifier
The convolutional neural network is configured to receive an electrocardiogram segment as an input and to generate an output indicative of whether the received electrocardiogram segment represents a cardiac arrhythmia. No specific features of the electrocardiogram are identified to the convolutional neural network, and the received electrocardiogram segment is not filtered, transformed, or processed prior to reception by the algorithm. The algorithm is trained in a similar manner - the electrocardiogram segments are the sole input to the convolutional neural network.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Neural Network Classifier
The convolutional neural network is configured to receive an electrocardiogram segment as an input and to generate an output indicative of whether the received electrocardiogram segment represents a cardiac arrhythmia. No specific features of the electrocardiogram are identified to the convolutional neural network, and the received electrocardiogram segment is not filtered, transformed, or processed prior to reception by the algorithm. The algorithm is trained in a similar manner - the electrocardiogram segments are the sole input to the convolutional neural network.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Scripps Clinic
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Sanjeev Bhavnani MD
Principal Investigator - Healthcare Innovation
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Sanjeev Bhavnani, MD
Role: PRINCIPAL_INVESTIGATOR
Scripps Clinic Medical Group
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Scripps Clinic
San Diego, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT. Artificial Intelligence in Cardiology. J Am Coll Cardiol. 2018 Jun 12;71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.
Kiranyaz S, Ince T, Gabbouj M. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks. IEEE Trans Biomed Eng. 2016 Mar;63(3):664-75. doi: 10.1109/TBME.2015.2468589. Epub 2015 Aug 14.
Bhavnani SP, Parakh K, Atreja A, Druz R, Graham GN, Hayek SS, Krumholz HM, Maddox TM, Majmudar MD, Rumsfeld JS, Shah BR. 2017 Roadmap for Innovation-ACC Health Policy Statement on Healthcare Transformation in the Era of Digital Health, Big Data, and Precision Health: A Report of the American College of Cardiology Task Force on Health Policy Statements and Systems of Care. J Am Coll Cardiol. 2017 Nov 28;70(21):2696-2718. doi: 10.1016/j.jacc.2017.10.018. No abstract available.
Bhavnani SP, Narula J, Sengupta PP. Mobile technology and the digitization of healthcare. Eur Heart J. 2016 May 7;37(18):1428-38. doi: 10.1093/eurheartj/ehv770. Epub 2016 Feb 11.
Vandendriessche B, Abas M, Dick TE, Loparo KA, Jacono FJ. A Framework for Patient State Tracking by Classifying Multiscalar Physiologic Waveform Features. IEEE Trans Biomed Eng. 2017 Dec;64(12):2890-2900. doi: 10.1109/TBME.2017.2684244. Epub 2017 Mar 17.
Arvanaghi R, Daneshvar S, Seyedarabi H, Goshvarpour A. Fusion of ECG and ABP signals based on wavelet transform for cardiac arrhythmias classification. Comput Methods Programs Biomed. 2017 Nov;151:71-78. doi: 10.1016/j.cmpb.2017.08.013. Epub 2017 Aug 24.
Figuera C, Irusta U, Morgado E, Aramendi E, Ayala U, Wik L, Kramer-Johansen J, Eftestol T, Alonso-Atienza F. Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators. PLoS One. 2016 Jul 21;11(7):e0159654. doi: 10.1371/journal.pone.0159654. eCollection 2016.
Li Q, Rajagopalan C, Clifford GD. Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans Biomed Eng. 2014 Jun;61(6):1607-13. doi: 10.1109/TBME.2013.2275000. Epub 2013 Jul 26.
Lyon A, Minchole A, Martinez JP, Laguna P, Rodriguez B. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. J R Soc Interface. 2018 Jan;15(138):20170821. doi: 10.1098/rsif.2017.0821.
Mjahad A, Rosado-Munoz A, Bataller-Mompean M, Frances-Villora JV, Guerrero-Martinez JF. Ventricular Fibrillation and Tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning. Comput Methods Programs Biomed. 2017 Apr;141:119-127. doi: 10.1016/j.cmpb.2017.02.010. Epub 2017 Feb 10.
Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J. ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol Meas. 2018 Sep 24;39(9):094006. doi: 10.1088/1361-6579/aad9ed.
Fan X, Yao Q, Cai Y, Miao F, Sun F, Li Y. Multiscaled Fusion of Deep Convolutional Neural Networks for Screening Atrial Fibrillation From Single Lead Short ECG Recordings. IEEE J Biomed Health Inform. 2018 Nov;22(6):1744-1753. doi: 10.1109/JBHI.2018.2858789. Epub 2018 Aug 7.
Warrick PA, Nabhan Homsi M. Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection. Physiol Meas. 2018 Oct 30;39(11):114002. doi: 10.1088/1361-6579/aad386.
Shen CP, Freed BC, Walter DP, Perry JC, Barakat AF, Elashery ARA, Shah KS, Kutty S, McGillion M, Ng FS, Khedraki R, Nayak KR, Rogers JD, Bhavnani SP. Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator. J Am Heart Assoc. 2023 Apr 18;12(8):e026974. doi: 10.1161/JAHA.122.026974. Epub 2023 Mar 21.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
027527
Identifier Type: -
Identifier Source: org_study_id