Assessment of Graft Perfusion and Oxygenation for Improved Outcome in Esophageal Cancer Surgery
NCT ID: NCT03587532
Last Updated: 2023-12-28
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
70 participants
INTERVENTIONAL
2021-12-13
2024-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Aims:
* To perform intraoperative ICG based NIRF angiography of the stomach graft during minimally invasive esophagectomy in EC patients, and to calculate tissue blood flow and volume using curve analysis and advanced compartmental modeling;
* To validate imaging based perfusion parameters by comparison with hemodynamic parameters, blood and tissue expression of hypoxia induced markers, and tissue mitochondrial respiration rate
* To evaluate the ability of NIRF based perfusion measurement to predict anastomotic leakage.
Methods: Patients (N=70) with resectable EC will be recruited to undergo minimally invasive Ivor Lewis esophagectomy according to the current standard of care. ICG based angiography will be performed after creation of the stomach graft and after thoracic pull-up of the graft. Dynamic digital images will be obtained starting immediately after intravenous bolus administration of 0.5 mg/kg of ICG. The resulting images will be subjected to curve analysis (time to peak, washout time) and to compartmental analysis based on the AATH kinetic model (adiabatic approximation to tissue homogeneity, which allows to calculate blood flow, blood volume, vascular heterogeneity, and vascular leakage). The calculated perfusion parameters will be compared to intraoperative hemodynamic data (PiCCO catheter) to evaluate how patient hemodynamics affect graft perfusion. To verify whether graft perfusion truly represents tissue oxygenation, perfusion parameters will be compared with systemic lactate as well as serosal lactate from the stomach graft. In addition, perfusion parameters will be compared to tissue expression of hypoxia related markers and mitochondrial chain respiratory rate as measured in tissue samples from the stomach graft.
Finally, the ability of functional, histological, and cellular perfusion and oxygenation parameters to predict anastomotic leakage and postoperative morbidity in general will be evaluated using the appropriate univariate and multivariate statistical analyses.
Relevance: The results of this project may lead to a novel, reproducible, and minimally invasive method to objectively assess perioperative anastomotic perfusion during EC surgery. Such a tool may help to reduce the incidence of AL and its associated severe morbidity and mortality
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Indocyanine Green Angiography
ICG based angiography after creation of the stomach graft and after thoracic pull-up of the graft. Dynamic digital images will be obtained starting immediately after intravenous bolus administration of 0.5 mg/kg of ICG.
Indocyanine green angiography
ICGA will be performed twice during standard esophagectomy: 30 minutes after the stomach graft creation and immediately before the esophagogastric anastomosis. stock dose of 25 mg ICG (Pulsion Medical Systems, Germany) will be diluted to 5 mg/mL with sterile water. An IV bolus of 0.5 mg/kg of ICG will be injected via a central venous catheter. Video data will be obtained with a charge-coupled device (CCD) camera fitted with a light-emitting diode emitting at a wavelength of 760mm (Visera® elite II, Olympus medical system corp, Tokyo, Japan). Images will be recorded starting immediately prior to injection until 3 minutes afterwards.
Hemodynamic evaluation
Advanced continuous hemodynamic monitoring during surgery will be performed using a PiCCO® (Pulse index Continuous Cardiac Output, Pulsion Medical Systems, Germany) catheter.
Biological and pathological markers of ischemia
* Systemic and local capillary lactate on blood samples
* Mitochondrial Respiratory activity analyses on biopsies at 3 region of interest (ROI)
* Pathological analyses of the biopsies at 3 ROI
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Indocyanine green angiography
ICGA will be performed twice during standard esophagectomy: 30 minutes after the stomach graft creation and immediately before the esophagogastric anastomosis. stock dose of 25 mg ICG (Pulsion Medical Systems, Germany) will be diluted to 5 mg/mL with sterile water. An IV bolus of 0.5 mg/kg of ICG will be injected via a central venous catheter. Video data will be obtained with a charge-coupled device (CCD) camera fitted with a light-emitting diode emitting at a wavelength of 760mm (Visera® elite II, Olympus medical system corp, Tokyo, Japan). Images will be recorded starting immediately prior to injection until 3 minutes afterwards.
Hemodynamic evaluation
Advanced continuous hemodynamic monitoring during surgery will be performed using a PiCCO® (Pulse index Continuous Cardiac Output, Pulsion Medical Systems, Germany) catheter.
Biological and pathological markers of ischemia
* Systemic and local capillary lactate on blood samples
* Mitochondrial Respiratory activity analyses on biopsies at 3 region of interest (ROI)
* Pathological analyses of the biopsies at 3 ROI
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Subjects ≥ 18 years and ≤ 75 years who are willing to participate and provide written informed consent prior to any study-related procedures.
* Subjects scheduled for elective minimally invasive Ivor Lewis esophagectomy
* Intrathoracic circular stapled esophago-gastric anastomosis
Exclusion Criteria
* Known hypersensitivity to ICG
* Female patients who are pregnant or nursing
* Participation in other studies involving investigational drugs or devices.
* Use of Avastin™ (bevacizumab) or other anti vascular endothelial growth factor (VEGF) agents within 30 days prior to surgery
Intra-operatively
* Intra-operative findings that may preclude conduct of the study procedures
* Anastomosis performed differently than the standard of care
* Excessive bleeding (\>500 ml) prior to anastomosis
18 Years
85 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Kom Op Tegen Kanker
OTHER
University Hospital, Ghent
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital
Ghent, , Belgium
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Elke Van Daele, MD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Kassis ES, Kosinski AS, Ross P Jr, Koppes KE, Donahue JM, Daniel VC. Predictors of anastomotic leak after esophagectomy: an analysis of the society of thoracic surgeons general thoracic database. Ann Thorac Surg. 2013 Dec;96(6):1919-26. doi: 10.1016/j.athoracsur.2013.07.119. Epub 2013 Sep 24.
Biere SS, Maas KW, Cuesta MA, van der Peet DL. Cervical or thoracic anastomosis after esophagectomy for cancer: a systematic review and meta-analysis. Dig Surg. 2011;28(1):29-35. doi: 10.1159/000322014. Epub 2011 Feb 4.
Sauvanet A, Mariette C, Thomas P, Lozac'h P, Segol P, Tiret E, Delpero JR, Collet D, Leborgne J, Pradere B, Bourgeon A, Triboulet JP. Mortality and morbidity after resection for adenocarcinoma of the gastroesophageal junction: predictive factors. J Am Coll Surg. 2005 Aug;201(2):253-62. doi: 10.1016/j.jamcollsurg.2005.02.002.
Sunpaweravong S, Ruangsin S, Laohawiriyakamol S, Mahattanobon S, Geater A. Prediction of major postoperative complications and survival for locally advanced esophageal carcinoma patients. Asian J Surg. 2012 Jul;35(3):104-9. doi: 10.1016/j.asjsur.2012.04.029. Epub 2012 Jun 6.
Haga Y, Wada Y, Takeuchi H, Ikejiri K, Ikenaga M. Prediction of anastomotic leak and its prognosis in digestive surgery. World J Surg. 2011 Apr;35(4):716-22. doi: 10.1007/s00268-010-0922-5.
Rutegard M, Lagergren P, Rouvelas I, Lagergren J. Intrathoracic anastomotic leakage and mortality after esophageal cancer resection: a population-based study. Ann Surg Oncol. 2012 Jan;19(1):99-103. doi: 10.1245/s10434-011-1926-6. Epub 2011 Jul 19.
Van Daele E, Van de Putte D, Ceelen W, Van Nieuwenhove Y, Pattyn P. Risk factors and consequences of anastomotic leakage after Ivor Lewis oesophagectomydagger. Interact Cardiovasc Thorac Surg. 2016 Jan;22(1):32-7. doi: 10.1093/icvts/ivv276. Epub 2015 Oct 3.
Wright CD, Kucharczuk JC, O'Brien SM, Grab JD, Allen MS; Society of Thoracic Surgeons General Thoracic Surgery Database. Predictors of major morbidity and mortality after esophagectomy for esophageal cancer: a Society of Thoracic Surgeons General Thoracic Surgery Database risk adjustment model. J Thorac Cardiovasc Surg. 2009 Mar;137(3):587-95; discussion 596. doi: 10.1016/j.jtcvs.2008.11.042.
Junemann-Ramirez M, Awan MY, Khan ZM, Rahamim JS. Anastomotic leakage post-esophagogastrectomy for esophageal carcinoma: retrospective analysis of predictive factors, management and influence on longterm survival in a high volume centre. Eur J Cardiothorac Surg. 2005 Jan;27(1):3-7. doi: 10.1016/j.ejcts.2004.09.018.
Markar SR, Arya S, Karthikesalingam A, Hanna GB. Technical factors that affect anastomotic integrity following esophagectomy: systematic review and meta-analysis. Ann Surg Oncol. 2013 Dec;20(13):4274-81. doi: 10.1245/s10434-013-3189-x. Epub 2013 Aug 14.
Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, Tuchin VV, Venermo M, Valisuo P. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585. doi: 10.1155/2012/940585. Epub 2012 Apr 22.
Milstein DMJ, Ince C, Gisbertz SS, Boateng KB, Geerts BF, Hollmann MW, van Berge Henegouwen MI, Veelo DP. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy. Medicine (Baltimore). 2016 Jun;95(25):e3875. doi: 10.1097/MD.0000000000003875.
Linder G, Hedberg J, Bjorck M, Sundbom M. Perfusion of the gastric conduit during esophagectomy. Dis Esophagus. 2017 Jan 1;30(1):143-149. doi: 10.1111/dote.12537.
Pham TH, Perry KA, Enestvedt CK, Gareau D, Dolan JP, Sheppard BC, Jacques SL, Hunter JG. Decreased conduit perfusion measured by spectroscopy is associated with anastomotic complications. Ann Thorac Surg. 2011 Feb;91(2):380-5. doi: 10.1016/j.athoracsur.2010.10.006.
Tsekov C, Belyaev O, Tcholakov O, Tcherveniakov A. Intraoperative Doppler assessment of gastric tube perfusion in esophagogastroplasty. J Surg Res. 2006 May;132(1):98-103. doi: 10.1016/j.jss.2005.07.037. Epub 2005 Sep 12.
Koyanagi K, Ozawa S, Oguma J, Kazuno A, Yamazaki Y, Ninomiya Y, Ochiai H, Tachimori Y. Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence: New predictive evaluation of anastomotic leakage after esophagectomy. Medicine (Baltimore). 2016 Jul;95(30):e4386. doi: 10.1097/MD.0000000000004386.
Zehetner J, DeMeester SR, Alicuben ET, Oh DS, Lipham JC, Hagen JA, DeMeester TR. Intraoperative Assessment of Perfusion of the Gastric Graft and Correlation With Anastomotic Leaks After Esophagectomy. Ann Surg. 2015 Jul;262(1):74-8. doi: 10.1097/SLA.0000000000000811.
Yukaya T, Saeki H, Kasagi Y, Nakashima Y, Ando K, Imamura Y, Ohgaki K, Oki E, Morita M, Maehara Y. Indocyanine Green Fluorescence Angiography for Quantitative Evaluation of Gastric Tube Perfusion in Patients Undergoing Esophagectomy. J Am Coll Surg. 2015 Aug;221(2):e37-42. doi: 10.1016/j.jamcollsurg.2015.04.022. Epub 2015 Apr 30. No abstract available.
Campbell C, Reames MK, Robinson M, Symanowski J, Salo JC. Conduit Vascular Evaluation is Associated with Reduction in Anastomotic Leak After Esophagectomy. J Gastrointest Surg. 2015 May;19(5):806-12. doi: 10.1007/s11605-015-2794-3. Epub 2015 Mar 20.
Kamiya K, Unno N, Miyazaki S, Sano M, Kikuchi H, Hiramatsu Y, Ohta M, Yamatodani T, Mineta H, Konno H. Quantitative assessment of the free jejunal graft perfusion. J Surg Res. 2015 Apr;194(2):394-399. doi: 10.1016/j.jss.2014.10.049. Epub 2014 Nov 5.
Kumagai Y, Ishiguro T, Haga N, Kuwabara K, Kawano T, Ishida H. Hemodynamics of the reconstructed gastric tube during esophagectomy: assessment of outcomes with indocyanine green fluorescence. World J Surg. 2014 Jan;38(1):138-43. doi: 10.1007/s00268-013-2237-9.
Diana M, Agnus V, Halvax P, Liu YY, Dallemagne B, Schlagowski AI, Geny B, Diemunsch P, Lindner V, Marescaux J. Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg. 2015 Jan;102(2):e169-76. doi: 10.1002/bjs.9725.
Diana M, Halvax P, Dallemagne B, Nagao Y, Diemunsch P, Charles AL, Agnus V, Soler L, Demartines N, Lindner V, Geny B, Marescaux J. Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc. 2014 Nov;28(11):3108-18. doi: 10.1007/s00464-014-3592-9. Epub 2014 Jun 10.
Diana M, Dallemagne B, Chung H, Nagao Y, Halvax P, Agnus V, Soler L, Lindner V, Demartines N, Diemunsch P, Geny B, Swanstrom L, Marescaux J. Probe-based confocal laser endomicroscopy and fluorescence-based enhanced reality for real-time assessment of intestinal microcirculation in a porcine model of sigmoid ischemia. Surg Endosc. 2014 Nov;28(11):3224-33. doi: 10.1007/s00464-014-3595-6. Epub 2014 Jun 17.
Van Daele E, Van Nieuwenhove Y, Ceelen W, Vanhove C, Braeckman BP, Hoorens A, Van Limmen J, Varin O, Van de Putte D, Willaert W, Pattyn P. Assessment of graft perfusion and oxygenation for improved outcome in esophageal cancer surgery: Protocol for a single-center prospective observational study. Medicine (Baltimore). 2018 Sep;97(38):e12073. doi: 10.1097/MD.0000000000012073.
Related Links
Access external resources that provide additional context or updates about the study.
Cancer Statistics, GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. International Agency for Research on Cancer, WHO.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
EC/2018/0671
Identifier Type: -
Identifier Source: org_study_id