Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
PHASE2
1 participants
INTERVENTIONAL
2019-04-22
2020-08-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The aim of this study is to investigate whether adrenergic blockade through the use of low-dose carvedilol treatment can improve hypoglycemia awareness and the counterregulatory hormone responses to hypoglycemia in T1DM patients with impaired awareness of hypoglycemia.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Sensors that detect changes in blood glucose levels and initiate glucose counterregulatory responses have been identified in both the periphery and within the brain. These sensors have been localized to the hepatic portal vein, the carotid body and the brain. In the brain, the dominant sensors are located in the hypothalamus. While peripheral glucose sensors may play a role in mediating the immediate counterregulatory responses to hypoglycemia, it is thought that glucosensors located within the brain may have a redundant regulatory and/or modulatory role in regulating glucose counterregulatory responses. It is well established that brain glucose sensors are crucial for detecting falling blood glucose levels and for initiating counterregulatory responses. These sensors are located in the hindbrain, the lateral hypothalamus, the paraventricular nucleus, the dorsal hypothalamus and the ventromedial hypothalamus (VMH). The neurons within the VMH contain much of the same glucose sensing machinery as the pancreatic β-cells. To date, two main types of glucose sensing neurons have been identified in the brain - those that increase their firing rate in response to increases in glucose levels, the "glucose-excited" (GE) neurons and those that decrease their firing rate in response to increases in glucose levels, the "glucose-inhibited" (GI) neurons. The mechanism by which GE neurons sense changes in blood glucose concentrations is believed to be similar to that used by pancreatic β-cells whereas GI neurons respond to decreases in ambient glucose levels through activation of the metabolic fuel sensor, AMP kinase (AMPK), and closure of chloride channels that result in increased activity of GI neurons. Although many of these sensing components have been identified, it is still not entirely clear how glucose sensing neurons regulate counterregulatory hormone release. It has been proposed that alterations in the firing rates of VMH glucose sensing neurons in response to glucose or fuel deficits can inhibit (as is the case for GE neurons) or stimulate (as is the case for GI neurons) the exocytosis of vesicles containing neurotransmitters that can modulate the counterregulatory hormone response.
The inhibitory neurotransmitter, GABA, and the stimulatory neurotransmitters, glutamate and norepinephrine (NE), act within the VMH to suppress or stimulate the counterregulatory responses to hypoglycemia, respectively. In response to an initial bout of hypoglycemia, VMH GABA levels decrease while glutamate and NE levels increase, allowing for activation of the counterregulatory hormone responses. While these studies underscore the importance of VMH neurotransmitter signaling in regulating glucose homeostatic mechanisms, to date, the mechanisms that lead to their dysregulation in models of counterregulatory failure are not entirely clear. Recent evidence suggests that lactate, which serves as an alternate fuel substrate in the brain, plays an important role in precipitating the defects noted above. Lactate produced from neighboring astrocytes can supplement higher energy requirements during periods of increased neuronal activity or when glucose supply is limited. If this is the case, then lactate can be used in place of glucose as a fuel for VMH glucose sensing neurons, preventing them from detecting a fall in glucose levels, causing (inhibitory) GABA tone to be enhanced and (stimulatory) glutamate output to be reduced. Together, these actions ultimately suppress the release of counterregulatory hormones. In recent years, it has been shown that lactate levels are sensed by the brain and more specifically, can act in the hypothalamus to regulate glucose homeostasis, appetite and body weight. Lactate prevents the activation of hypothalamic neurons during glucose deprivation and more pertinent to this application, attenuates glucose counterregulatory responses to hypoglycemia when locally administered into the VMH. Data from the investigator's research group revealed VMH extracellular lactate concentrations are elevated in RH and diabetic animals and in particular, these conditions also increase expression of the lactate transporter in the VMH. When VMH lactate uptake is pharmacologically inhibited, neurotransmitter and counterregulatory responses improve in both RH and diabetic animals, suggesting lactate plays an important role in dysregulating neurotransmitter systems in the VMH, which in turn, impairs counterregulatory responses. Preliminary data suggests that therapeutic strategies that can reduce brain lactate levels, may help restore hypothalamic glucose sensing mechanisms and the counterregulatory response to hypoglycemia. Hence, identifying the mechanisms that increase VMH lactate levels may lead to suitable therapeutic strategies to prevent hypoglycemia.
Norepinephrine can enhance lactate production from astrocytes and it can also increase the uptake of lactate into neurons through the activation of β2-adrenergic receptors (β2AR), potentially helping to coordinate both the supply and uptake of lactate into neurons. Normally, in response to an acute bout of hypoglycemia, VMH NE levels rise and act through β2ARs to enhance the sympathoadrenal response. Although activation of VMH β2ARs augments the counterregulatory response during acute bouts of hypoglycemia, less is known about the effects of RH on this neurotransmitter system. It has been reported that VMH NE levels are not altered by successive bouts of hypoglycemia, suggesting activation of the VMH NE system is not dampened by RH and that its suppressive effects on counterregulatory hormone release may lie downstream of NE release. In support of this finding, adrenergic blockade during antecedent bouts of hypoglycemia was shown to prevent counterregulatory failure in healthy human subjects. Therefore, while acute activation of VMH adrenergic receptors may be beneficial in its capacity to enhance the counterregulatory response, repeated activation of this neurotransmitter system may contribute to counterregulatory failure, but the mechanisms by which this occurs have not been fully identified.
To evaluate whether repeated activation of the VMH NE system contributes to counterregulatory failure, NE was microinjected into the VMH of non-diabetic, hypoglycemia-naive rats for 3 hours/day for 3 consecutive days before subjecting the animals to a hypoglycemic glucose clamp on day 4. Repeated activation of the VMH NE system in the absence of hypoglycemia, increased VMH lactate levels and more importantly, blunted the counterregulatory hormone responses to hypoglycemia. This phenomenon was recapitulated with microinjection of salbutamol, a short-acting β2AR agonist, into the VMH using the same protocol as for NE, suggesting the suppressive effects of NE are mediated through VMH β2ARs. In a subgroup of animals treated with NE, uptake of lactate into neurons was blocked immediately prior to the hypoglycemic clamp. In this group, the suppressive effects of NE treatment on glucose counterregulation were completely abolished. Hence, preliminary data suggests that repeated activation of the VMH NE system plays a role in the development of counterregulatory failure, in part by enhancing central lactate production and therefore, the use of β-adrenergic blockers may be a promising treatment to preserve the responses to hypoglycemia. Preliminary data show that RH rats treated with low doses of the non-specific β-blocker, carvedilol, during the induction of RH, required less exogenous glucose during the hypoglycemic clamp compared to RH animals treated with vehicle. More importantly, reductions in VMH lactate levels and significant improvements in the counterregulatory hormone responses to hypoglycemia in the carvedilol-treated RH animals were observed.
Carvedilol is a third generation non-selective, vasodilating β-blocker, which is FDA-approved for the treatment of congestive heart failure and hypertension. Carvedilol mainly blocks β2- and β1-adrenergic receptors and some α1-adrenergic receptors. Due to its lipophilic nature, carvedilol readily crosses the blood-brain barrier. As the brain is the primary target, this beneficial pharmacokinetic property of carvedilol improves central nervous system bioavailability, allowing lower doses to be used to deliver treatment to the brain. With lower doses, the potential for side effects stemming from unnecessary exposure of peripheral tissues to high levels of β-adrenergic blockade can be reduced. This study is designed to evaluate the effectiveness of low-dose carvedilol treatment for 4 weeks as a treatment for restoring the counterregulatory hormone responses to hypoglycemia and improve hypoglycemia awareness in T1DM patients.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Carvedilol 3.125 mg
After enrollment, participants will be placed on continuous glucose monitoring (CGM). One week after CGM placement, participants will undergo the first hypoglycemic clamp study to obtain baseline measures of hypoglycemia frequency, hypoglycemia awareness scores and hormone responses. Following the initial clamp procedure, participants will receive 4 weeks of low-dose carvedilol treatment. After 4 weeks of treatment, the participants will undergo a second hypoglycemic clamp session.
Carvedilol 3.125 mg
Participants will receive a 3.125 mg oral dose of carvedilol twice daily during the 4-week treatment period
Carvedilol 2.5 mg
After enrollment, participants will be placed on continuous glucose monitoring (CGM). One week after CGM placement, participants will undergo the first hypoglycemic clamp study to obtain baseline measures of hypoglycemia frequency, hypoglycemia awareness scores and hormone responses. Following the initial clamp procedure, participants will receive 4 weeks of low-dose carvedilol treatment. After 4 weeks of treatment, the participants will undergo a second hypoglycemic clamp session.
Carvedilol 2.5 mg
Participants will receive a 2.5 mg oral dose of carvedilol twice daily during the 4-week treatment period
Placebo capsule
After enrollment, participants will be placed on continuous glucose monitoring (CGM). One week after CGM placement, participants will undergo the first hypoglycemic clamp study to obtain baseline measures of hypoglycemia frequency, hypoglycemia awareness scores and hormone responses. Following the initial clamp procedure, participants will receive 4 weeks of placebo treatment. After 4 weeks of treatment, the participants will undergo a second hypoglycemic clamp session.
Placebo capsule
Participants will receive a matching oral dose of placebo capsule twice daily during the 4-week treatment period
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Carvedilol 3.125 mg
Participants will receive a 3.125 mg oral dose of carvedilol twice daily during the 4-week treatment period
Carvedilol 2.5 mg
Participants will receive a 2.5 mg oral dose of carvedilol twice daily during the 4-week treatment period
Placebo capsule
Participants will receive a matching oral dose of placebo capsule twice daily during the 4-week treatment period
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age \> 18 years
* Presence of impaired hypoglycemia awareness/unawareness
* Intensive insulin treatment as defined by multiple daily insulin injections (3 or more) or insulin pump therapy
* Negative pregnancy test
* Able to provide informed consent and willing to sign an approved consent form that conforms to federal and institutional guidelines
Exclusion Criteria
* Overt diabetes complications (neuropathy, nephropathy, retinopathy)
* Presence of anemia
* Current or recent use of beta-blocker therapy
* Use of diuretics
* Allergies or contraindications to beta-blockers or heparin
* Use of benzodiazepines
* Alcohol, drug or medication abuse
* Frequent use of acetaminophen
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Owen Chan, PhD
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Owen Chan, PhD
Associate Professor of Medicine
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Owen Chan, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
University of Utah
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Utah
Salt Lake City, Utah, United States
Countries
Review the countries where the study has at least one active or historical site.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRB #108879
Identifier Type: -
Identifier Source: org_study_id