Evaluation of Plasma Sphingosine-1-Phosphate as A Diagnostic and Prognostic Biomarkers of Community-Acquired Pneumonia
NCT ID: NCT03473119
Last Updated: 2019-07-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
600 participants
OBSERVATIONAL
2016-03-19
2021-03-19
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Prospective Data Collection of Patients With Diffuse Parenchymal Lung Diseases
NCT01600378
Diagnostic Value of Ultralow-dose Computed Tomography for the Detection of Pulmonary Nodules and Lung Parenchym Alterations Compared to Standard-dose CT
NCT02468609
Occurrence of Potential Bacterial and Viral Pathogens in Stable Chronic Obstructive Pulmonary Disease and During Acute Exacerbations of the Disease, in Asia Pacific
NCT03151395
Neutrophil Imaging in Healthy Subjects Following Lipopolysaccharide or Saline Challenge and in Subjects With Chronic Obstructive Pulmonary Disease
NCT02551614
Metabolomic Analysis of Exhaled Breath Condensates in Patients With COPD and Bronchiectasis
NCT01410422
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The use of conventional diagnostic markers, such as complete blood count (CBC) with differential and C-reactive protein is the current mainstream method for differentiating clinically relevant to bacterial lower respiratory tract infections from other mimics. However, for patients with a clinical suspicion of infection, those conventional methods have suboptimal sensitivity and specificity\[3,4\] The limitations often cause the ambiguity of the initiation of antibiotic treatment. As a result, unnecessary use of antibiotics adversely affects patient outcomes. Also, inappropriate antibiotic therapy increases antibiotic resistance in patients, which poses a public health problem. Current strategies to reduce antibiotic usage have included the development of biomarker-directed treatment algorithms. However, a recent study suggested that procalcitonin-guided therapy has not been effective in reducing antibiotic use\[5\]. Therefore, developing new biomarkers may be the answer to the problems.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid has both extracellular and intracellular effects in mammalian cells\[6-9\]. S1P is synthesized by two sphingosine kinases (SphK1 and SphK 2) and degraded by S1P lyase (S1PL)\[6\] S1P is a ligand for five G protein-coupled receptors, S1P receptors1-5\[6,7\], and also acts as an intracellular second messenger\[10,11\]. S1P is involved in many physiological processes including immune responses and endothelial barrier integrity\[12-15\]. In term of endothelial barrier integrity, S1P plays a crucial role in protecting lungs from the pulmonary leak and lung injury. \[16-19\] Previous research suggests that S1P signaling through S1PR1 is crucial for endothelial barrier function. \[20\] The S1P induces actin polymerization and then results in the spreading of endothelial cells which fills intercellular gaps. Also, the S1P-signaling can stabilize the endothelial cell-cell junctions such as adherens junction and tight junction. \[21-23\] Both actin-dependent outward spreading of endothelial cells and cell junction stabilization enhance the endothelial barrier function. Because of the involvement in lung injury and endothelial barrier function, S1P would be the potential biomarker of pneumonia.
For the study, a case-control design was utilized for collecting clinical samples. the investigators plan to enroll 150 individuals for each targeted disease (CAP, Asthma, Asthma with CAP, COPD, and COPD with CAP) and control. Peripheral blood will be collected from the patients presenting at the emergency department (ED) of Wan Fang Hospital for an acute event of the candidate diseases. Each recruited individual will fill out a specific questionnaire, which will include lifestyle, occupation, habits, and general dietary information. The initial peripheral blood sample will be obtained in the emergency department, and if the patients were admitted, the individual's blood sample would be collected one day before a planned discharge again. The following parameters will be recorded for each participant: sex, age, body weight, body temperature, vital signs at the ED, and clinical characteristics of the disease. The laboratory testing will include baseline analyses (hematocrit, white blood count with differential, serum sodium, and chloride), ALT, AST, CRP, BUN, and creatinine. The plasma S1P will also be tested and will be measured by ELISA. The questionnaire will provide the individual's basic information of living area, occupational environment, personal habits and family history for further analysis.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Control
Healthy individuals
No interventions assigned to this group
Asthma
Asthma acute exacerbations
No interventions assigned to this group
Asthma with CAP
Asthma acute exacerbations with community-acquired pneumonia
No interventions assigned to this group
COPD
Acute exacerbations of chronic obstructive pulmonary disease
No interventions assigned to this group
COPD with CAP
Acute exacerbations of chronic obstructive pulmonary disease with community-acquired pneumonia
No interventions assigned to this group
CAP
Community-acquired pneumonia
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Clinical diagnosis of Asthma (ICD-9 code 493),
* Clinical diagnosis of pneumonia (ICD-9 codes 480-488).
Exclusion Criteria
* Pregnant women,
* Psychiatric history
* Unfamiliar with Chinese
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Taipei Medical University WanFang Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The Emergency Department of Wan Fang Hospital
Taipei, Wenshan District, Taiwan
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Schuchardt M, Tolle M, Prufer J, van der Giet M. Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol. 2011 Jul;163(6):1140-62. doi: 10.1111/j.1476-5381.2011.01260.x.
Xiong Y, Hla T. S1P control of endothelial integrity. Curr Top Microbiol Immunol. 2014;378:85-105. doi: 10.1007/978-3-319-05879-5_4.
Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JG. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem. 2004 Jun 4;279(23):24692-700. doi: 10.1074/jbc.M313969200. Epub 2004 Mar 31.
Metersky ML, Waterer G, Nsa W, Bratzler DW. Predictors of in-hospital vs postdischarge mortality in pneumonia. Chest. 2012 Aug;142(2):476-481. doi: 10.1378/chest.11-2393.
Hausfater P. Biomarkers and infection in the emergency unit. Med Mal Infect. 2014 Apr;44(4):139-45. doi: 10.1016/j.medmal.2014.01.002. Epub 2014 Feb 17.
Mitsuma SF, Mansour MK, Dekker JP, Kim J, Rahman MZ, Tweed-Kent A, Schuetz P. Promising new assays and technologies for the diagnosis and management of infectious diseases. Clin Infect Dis. 2013 Apr;56(7):996-1002. doi: 10.1093/cid/cis1014. Epub 2012 Dec 7.
Lindenauer PK, Shieh MS, Stefan MS, Fisher KA, Haessler SD, Pekow PS, Rothberg MB, Krishnan JA, Walkey AJ. Hospital Procalcitonin Testing and Antibiotic Treatment of Patients Admitted for Chronic Obstructive Pulmonary Disease Exacerbation. Ann Am Thorac Soc. 2017 Dec;14(12):1779-1785. doi: 10.1513/AnnalsATS.201702-133OC.
Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol. 2005 Jul;5(7):560-70. doi: 10.1038/nri1650.
Anliker B, Chun J. Cell surface receptors in lysophospholipid signaling. Semin Cell Dev Biol. 2004 Oct;15(5):457-65. doi: 10.1016/j.semcdb.2004.05.005.
Meyer zu Heringdorf D, Liliom K, Schaefer M, Danneberg K, Jaggar JH, Tigyi G, Jakobs KH. Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+ mobilization independently of G-protein-coupled receptors. FEBS Lett. 2003 Nov 20;554(3):443-9. doi: 10.1016/s0014-5793(03)01219-5.
Usatyuk PV, He D, Bindokas V, Gorshkova IA, Berdyshev EV, Garcia JG, Natarajan V. Photolysis of caged sphingosine-1-phosphate induces barrier enhancement and intracellular activation of lung endothelial cell signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2011 Jun;300(6):L840-50. doi: 10.1152/ajplung.00404.2010. Epub 2011 Apr 8.
Blom T, Slotte JP, Pitson SM, Tornquist K. Enhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cell Signal. 2005 Jul;17(7):827-36. doi: 10.1016/j.cellsig.2004.11.022. Epub 2005 Jan 7.
Itagaki K, Yun JK, Hengst JA, Yatani A, Hauser CJ, Spolarics Z, Deitch EA. Sphingosine 1-phosphate has dual functions in the regulation of endothelial cell permeability and Ca2+ metabolism. J Pharmacol Exp Ther. 2007 Oct;323(1):186-91. doi: 10.1124/jpet.107.121210. Epub 2007 Jul 12.
Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007 Apr 13;316(5822):295-8. doi: 10.1126/science.1139221. Epub 2007 Mar 15.
Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008 Oct;8(10):753-63. doi: 10.1038/nri2400.
McVerry BJ, Peng X, Hassoun PM, Sammani S, Simon BA, Garcia JG. Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. Am J Respir Crit Care Med. 2004 Nov 1;170(9):987-93. doi: 10.1164/rccm.200405-684OC. Epub 2004 Jul 28.
Peng X, Hassoun PM, Sammani S, McVerry BJ, Burne MJ, Rabb H, Pearse D, Tuder RM, Garcia JG. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med. 2004 Jun 1;169(11):1245-51. doi: 10.1164/rccm.200309-1258OC. Epub 2004 Mar 12.
Sammani S, Moreno-Vinasco L, Mirzapoiazova T, Singleton PA, Chiang ET, Evenoski CL, Wang T, Mathew B, Husain A, Moitra J, Sun X, Nunez L, Jacobson JR, Dudek SM, Natarajan V, Garcia JG. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. Am J Respir Cell Mol Biol. 2010 Oct;43(4):394-402. doi: 10.1165/rcmb.2009-0223OC. Epub 2009 Sep 11.
Li X, Stankovic M, Bonder CS, Hahn CN, Parsons M, Pitson SM, Xia P, Proia RL, Vadas MA, Gamble JR. Basal and angiopoietin-1-mediated endothelial permeability is regulated by sphingosine kinase-1. Blood. 2008 Apr 1;111(7):3489-97. doi: 10.1182/blood-2007-05-092148. Epub 2008 Jan 16.
Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest. 2009 Jul;119(7):1871-9. doi: 10.1172/jci38575.
Xu M, Waters CL, Hu C, Wysolmerski RB, Vincent PA, Minnear FL. Sphingosine 1-phosphate rapidly increases endothelial barrier function independently of VE-cadherin but requires cell spreading and Rho kinase. Am J Physiol Cell Physiol. 2007 Oct;293(4):C1309-18. doi: 10.1152/ajpcell.00014.2007. Epub 2007 Aug 1.
Arce FT, Whitlock JL, Birukova AA, Birukov KG, Arnsdorf MF, Lal R, Garcia JG, Dudek SM. Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: role of cortactin. Biophys J. 2008 Jul;95(2):886-94. doi: 10.1529/biophysj.107.127167. Epub 2008 Apr 11.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
N201602089
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.