Fluoxetine Opens Window to Improve Motor Recovery After Stroke
NCT ID: NCT03448159
Last Updated: 2022-11-04
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE2
52 participants
INTERVENTIONAL
2019-01-01
2022-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Fluoxetine on Motor Rehabilitation After Ischemic Stroke
NCT00657163
MONitoring Sedentary Behavior and Light Physical Activity in Patients With Stroke
NCT05793177
Mindful Meditation for Chronic Stroke
NCT02687048
Physical Exercise as Treatment Post-stroke Fatigue - a Feasibilty Study.
NCT07206147
ExStroke Pilot Trial: Physical Exercise After Acute Ischaemic Stroke
NCT00132483
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Study participants will be evaluated at baseline, post-exercise program and 6-months post-exercise program. While enrolled in the study, participants will be required to take part in a 12 week, 3 times per week exercise program. Evaluators and patients will be blind to the treatment administered. The trial is constructed with randomization to remove selection and allocation biases and to ensure greater validity in observed differences in the outcome measures. The Applied Health Research Centre (AHRC) in Toronto will act as the coordinating and analysis center.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
QUADRUPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Fluoxetine Hydrochloride
Fluoxetine (Prozac) will be administered to this group. A ramp up period of 3-5 weeks will take place where the patient takes 10mg of Prozac per day. After that, the participant will take the regular dose of 20mg for the duration of the exercise intervention (12 weeks).
Fluoxetine Hydrochloride
Half of the participants will take fluoxetine for a period of 15-17 weeks (depending on ramp-up period).
Exercise Program
All participants will take part in a 12-week exercise program. The program will run 3 times/week, 1 hour/class.
Placebo
An over-encapsulated placebo, or "sugar pill" (so it appears identical to the trial drug) will be administered to this group. During the 3-5 week ramp up period for the experimental group, these participants will take a placebo identical to the 10mg Prozac capsule. After that, the participant will take a placebo identical to the 20mg Prozac capsule for the duration of the exercise intervention (12 weeks).
Placebo
Half of the participants will take the a placebo for a period of 15-17 weeks (depending on ramp-up period).
Exercise Program
All participants will take part in a 12-week exercise program. The program will run 3 times/week, 1 hour/class.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Fluoxetine Hydrochloride
Half of the participants will take fluoxetine for a period of 15-17 weeks (depending on ramp-up period).
Placebo
Half of the participants will take the a placebo for a period of 15-17 weeks (depending on ramp-up period).
Exercise Program
All participants will take part in a 12-week exercise program. The program will run 3 times/week, 1 hour/class.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Days post stroke must be between 2 to 12 months when enrolled (i.e. day of consent)
3. Patient-reported hemiparesis of the lower extremity
Exclusion Criteria
2. Pre-morbid modified Rankin score \> 2
3. Substantial premorbid disability or pre-existing deficit or language comprehension deficit that could interfere with assessments
4. Diagnosis of major depressive disorder/anxiety disorder requiring antidepressant use within 6 weeks of enrolment
5. Taking neuroleptic drugs, benzodiazepines, monoamine oxidase inhibitors within 30 days of enrolment
6. Unstable serious medical condition (e.g., terminal cancer, renal or liver failure, congestive heart failure)
7. Resting blood pressure exceeding 180/100mmHg
8. Requires more than a one person assist for transfer
9. Planned surgery that would affect participation in the trial
10. Participating in another formal lower limbs exercise program more than one day per week
11. History of QT prolongation or concomitant use of clearly identified potential QT prolonging drugs, at the investigators discretion (e.g. amiodarone, bepridil, dysopyramide, dofetilide, flecainide, ibutilide, procainamide, propafenone, quinidine, sotalol, phenothiazines, pimozide, ziprasidone, TCAs, halofantrine, cisapride, and probucol)
12. History of glaucoma
13. Patients with a history of thrombocytopenia or clinically significant bleeding disorder or use of NSAID, ASA or other anticoagulants, at the investigators' discretion
14. History of convulsive disorders
15. Potential pregnancy (per screening algorithm)
16. Patients with an ongoing history of illicit drug use and/or alcohol abuse
17. Patient unwilling or unable to comply with trial requirements
18. Patient unable to understand English or communicate with the study team with staff support or translation services
25 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of British Columbia
OTHER
Sunnybrook Health Sciences Centre
OTHER
University of Calgary
OTHER
Dalhousie University
OTHER
Parkwood Hospital, London, Ontario
OTHER
Riverview Health Centre Foundation
OTHER
Memorial University of Newfoundland
OTHER
Applied Health Research Centre
OTHER
Brain Canada
OTHER
Heart and Stroke Foundation Canadian Partnership for Stroke Recovery
UNKNOWN
University Health Network, Toronto
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Mark Bayley, MD
Role: PRINCIPAL_INVESTIGATOR
University Health Network, Toronto
Courtney Pollock, PhD
Role: PRINCIPAL_INVESTIGATOR
University of British Columbia & GF Strong Rehab Centre
Bradley MacIntosh, PhD
Role: PRINCIPAL_INVESTIGATOR
Sunnybrook Health Sciences Centre
Sean Dukelow, MD
Role: PRINCIPAL_INVESTIGATOR
University of Calgary
Sepideh Pooyania, MD
Role: PRINCIPAL_INVESTIGATOR
Riverview Health Centre
Michelle Ploughman, PhD
Role: PRINCIPAL_INVESTIGATOR
Memorial University of Newfoundland
Marilyn Mackay-Lyons, PhD
Role: PRINCIPAL_INVESTIGATOR
Dalhousie University
Robert Teasell, MD
Role: PRINCIPAL_INVESTIGATOR
Parkwood Institute
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Calgary
Calgary, Alberta, Canada
University of British Columbia & GF Strong Centre
Vancouver, British Columbia, Canada
Riverview Health Centre
Winnipeg, Manitoba, Canada
Memorial University of Newfoundland
St. John's, Newfoundland and Labrador, Canada
Dalhousie University
Halifax, Nova Scotia, Canada
Parkwood Institute
London, Ontario, Canada
Sunnybrook Health Sciences Centre
Toronto, Ontario, Canada
Toronto Rehabilitation Institute - University Health Network
Toronto, Ontario, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Alexander LD, Black SE, Patterson KK, Gao F, Danells CJ, McIlroy WE. Association between gait asymmetry and brain lesion location in stroke patients. Stroke. 2009 Feb;40(2):537-44. doi: 10.1161/STROKEAHA.108.527374. Epub 2008 Dec 24.
AVERT Trial Collaboration group. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015 Jul 4;386(9988):46-55. doi: 10.1016/S0140-6736(15)60690-0. Epub 2015 Apr 16.
Salbach NM, Wood-Dauphinee S, Desrosiers J, Eng JJ, Graham ID, Jaglal SB, Korner-Bitensky N, MacKay-Lyons M, Mayo NE, Richards CL, Teasell RW, Zwarenstein M, Bayley MT; Stroke Canada Optimization of Rehabilitation By Evidence - Implementation Trial (SCORE-IT) Team. Facilitated interprofessional implementation of a physical rehabilitation guideline for stroke in inpatient settings: process evaluation of a cluster randomized trial. Implement Sci. 2017 Aug 1;12(1):100. doi: 10.1186/s13012-017-0631-7.
Bensimon K, Herrmann N, Swardfager W, Yi H, Black SE, Gao FQ, Snaiderman A, Lanctot KL. Kynurenine and depressive symptoms in a poststroke population. Neuropsychiatr Dis Treat. 2014 Sep 22;10:1827-35. doi: 10.2147/NDT.S65740. eCollection 2014.
Berends HI, Nijlant J, van Putten M, Movig KL, IJzerman MJ. Single dose of fluoxetine increases muscle activation in chronic stroke patients. Clin Neuropharmacol. 2009 Jan-Feb;32(1):1-5.
Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004 Feb 4;24(5):1245-54. doi: 10.1523/JNEUROSCI.3834-03.2004.
Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, MacKay-Lyons M, Macko RF, Mead GE, Roth EJ, Shaughnessy M, Tang A; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Clinical Cardiology. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014 Aug;45(8):2532-53. doi: 10.1161/STR.0000000000000022. Epub 2014 May 20.
Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002 Apr 11;416(6881):636-40. doi: 10.1038/416636a.
Breceda EY, Dromerick AW. Motor rehabilitation in stroke and traumatic brain injury: stimulating and intense. Curr Opin Neurol. 2013 Dec;26(6):595-601. doi: 10.1097/WCO.0000000000000024.
Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, Bejot Y, Deltour S, Jaillard A, Niclot P, Guillon B, Moulin T, Marque P, Pariente J, Arnaud C, Loubinoux I. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011 Feb;10(2):123-30. doi: 10.1016/S1474-4422(10)70314-8. Epub 2011 Jan 7.
Cumberland Consensus Working Group; Cheeran B, Cohen L, Dobkin B, Ford G, Greenwood R, Howard D, Husain M, Macleod M, Nudo R, Rothwell J, Rudd A, Teo J, Ward N, Wolf S. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair. 2009 Feb;23(2):97-107. doi: 10.1177/1545968308326636.
Dhami KS, Churchward MA, Baker GB, Todd KG. Fluoxetine and citalopram decrease microglial release of glutamate and D-serine to promote cortical neuronal viability following ischemic insult. Mol Cell Neurosci. 2013 Sep;56:365-74. doi: 10.1016/j.mcn.2013.07.006. Epub 2013 Jul 19.
Dromerick AW, Edwardson MA, Edwards DF, Giannetti ML, Barth J, Brady KP, Chan E, Tan MT, Tamboli I, Chia R, Orquiza M, Padilla RM, Cheema AK, Mapstone ME, Fiandaca MS, Federoff HJ, Newport EL. Critical periods after stroke study: translating animal stroke recovery experiments into a clinical trial. Front Hum Neurosci. 2015 Apr 29;9:231. doi: 10.3389/fnhum.2015.00231. eCollection 2015.
Espinera AR, Ogle ME, Gu X, Wei L. Citalopram enhances neurovascular regeneration and sensorimotor functional recovery after ischemic stroke in mice. Neuroscience. 2013 Sep 5;247:1-11. doi: 10.1016/j.neuroscience.2013.04.011. Epub 2013 Apr 13.
Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015 Mar 12;372(11):1019-30. doi: 10.1056/NEJMoa1414905. Epub 2015 Feb 11.
Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Wallin A, Dichgans M, Marler JR, Leblanc GG. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006 Sep;37(9):2220-41. doi: 10.1161/01.STR.0000237236.88823.47. Epub 2006 Aug 17.
Hackett ML, Duncan JR, Anderson CS, Broad JB, Bonita R. Health-related quality of life among long-term survivors of stroke : results from the Auckland Stroke Study, 1991-1992. Stroke. 2000 Feb;31(2):440-7. doi: 10.1161/01.str.31.2.440.
Harris JE, Eng JJ, Miller WC, Dawson AS. A self-administered Graded Repetitive Arm Supplementary Program (GRASP) improves arm function during inpatient stroke rehabilitation: a multi-site randomized controlled trial. Stroke. 2009 Jun;40(6):2123-8. doi: 10.1161/STROKEAHA.108.544585. Epub 2009 Apr 9.
Hsieh YW, Wang CH, Sheu CF, Hsueh IP, Hsieh CL. Estimating the minimal clinically important difference of the Stroke Rehabilitation Assessment of Movement measure. Neurorehabil Neural Repair. 2008 Nov-Dec;22(6):723-7. doi: 10.1177/1545968308316385. Epub 2008 Sep 5.
Hsueh IP, Hsu MJ, Sheu CF, Lee S, Hsieh CL, Lin JH. Psychometric comparisons of 2 versions of the Fugl-Meyer Motor Scale and 2 versions of the Stroke Rehabilitation Assessment of Movement. Neurorehabil Neural Repair. 2008 Nov-Dec;22(6):737-44. doi: 10.1177/1545968308315999. Epub 2008 Jul 21.
Iadecola C, Anrather J. Stroke research at a crossroad: asking the brain for directions. Nat Neurosci. 2011 Oct 26;14(11):1363-8. doi: 10.1038/nn.2953.
Jorgensen HS, Nakayama H, Raaschou HO, Vive-Larsen J, Stoier M, Olsen TS. Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995 May;76(5):399-405. doi: 10.1016/s0003-9993(95)80567-2.
Kobayashi K, Ikeda Y, Sakai A, Yamasaki N, Haneda E, Miyakawa T, Suzuki H. Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci U S A. 2010 May 4;107(18):8434-9. doi: 10.1073/pnas.0912690107. Epub 2010 Apr 19.
Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012 Oct;26(8):923-31. doi: 10.1177/1545968312440745. Epub 2012 Mar 30.
Kwah LK, Harvey LA, Diong J, Herbert RD. Models containing age and NIHSS predict recovery of ambulation and upper limb function six months after stroke: an observational study. J Physiother. 2013 Sep;59(3):189-97. doi: 10.1016/S1836-9553(13)70183-8.
Langdon KD, Corbett D. Improved working memory following novel combinations of physical and cognitive activity. Neurorehabil Neural Repair. 2012 Jun;26(5):523-32. doi: 10.1177/1545968311425919. Epub 2011 Dec 9.
Levine B, Schweizer TA, O'Connor C, Turner G, Gillingham S, Stuss DT, Manly T, Robertson IH. Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training. Front Hum Neurosci. 2011 Feb 17;5:9. doi: 10.3389/fnhum.2011.00009. eCollection 2011.
Lynch E, Hillier S, Cadilhac D. When should physical rehabilitation commence after stroke: a systematic review. Int J Stroke. 2014 Jun;9(4):468-78. doi: 10.1111/ijs.12262. Epub 2014 Mar 18.
Mackay-Lyons M, McDonald A, Matheson J, Eskes G, Klus MA. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2013 Sep;27(7):644-53. doi: 10.1177/1545968313484809. Epub 2013 Apr 18.
Mansfield A, Wong JS, Bryce J, Brunton K, Inness EL, Knorr S, Jones S, Taati B, McIlroy WE. Use of Accelerometer-Based Feedback of Walking Activity for Appraising Progress With Walking-Related Goals in Inpatient Stroke Rehabilitation: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2015 Oct;29(9):847-57. doi: 10.1177/1545968314567968. Epub 2015 Jan 20.
Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O'Leary OF, Castren E, Maffei L. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008 Apr 18;320(5874):385-8. doi: 10.1126/science.1150516.
McEwen D, Taillon-Hobson A, Bilodeau M, Sveistrup H, Finestone H. Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial. Stroke. 2014 Jun;45(6):1853-5. doi: 10.1161/STROKEAHA.114.005362. Epub 2014 Apr 24.
McIntyre A, Richardson M, Janzen S, Hussein N, Teasell R. The evolution of stroke rehabilitation randomized controlled trials. Int J Stroke. 2014 Aug;9(6):789-92. doi: 10.1111/ijs.12272. Epub 2014 Mar 13.
Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009 Dec;10(12):861-72. doi: 10.1038/nrn2735. Epub 2009 Nov 4.
Nadeau SE, Wu SS, Dobkin BH, Azen SP, Rose DK, Tilson JK, Cen SY, Duncan PW; LEAPS Investigative Team. Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: LEAPS Trial. Neurorehabil Neural Repair. 2013 May;27(4):370-80. doi: 10.1177/1545968313481284. Epub 2013 Mar 15.
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002 Nov 8;298(5596):1248-51. doi: 10.1126/science.1072699.
Ploughman M, Granter-Button S, Chernenko G, Tucker BA, Mearow KM, Corbett D. Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience. 2005;136(4):991-1001. doi: 10.1016/j.neuroscience.2005.08.037. Epub 2005 Oct 3.
Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009 Apr;40(4):1490-5. doi: 10.1161/STROKEAHA.108.531806. Epub 2009 Jan 22.
Pollock A, St George B, Fenton M, Firkins L. Top 10 research priorities relating to life after stroke--consensus from stroke survivors, caregivers, and health professionals. Int J Stroke. 2014 Apr;9(3):313-20. doi: 10.1111/j.1747-4949.2012.00942.x. Epub 2012 Dec 11.
Portelli R, Lowe D, Irwin P, Pearson M, Rudd AG; Intercollegiate Stroke Working Party. Institutionalization after stroke. Clin Rehabil. 2005 Jan;19(1):97-108. doi: 10.1191/0269215505cr822oa.
Savitz SI, Cramer SC, Wechsler L; STEPS 3 Consortium. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke. 2014 Feb;45(2):634-9. doi: 10.1161/STROKEAHA.113.003379. Epub 2013 Dec 24. No abstract available.
Scali M, Begenisic T, Mainardi M, Milanese M, Bonifacino T, Bonanno G, Sale A, Maffei L. Fluoxetine treatment promotes functional recovery in a rat model of cervical spinal cord injury. Sci Rep. 2013;3:2217. doi: 10.1038/srep02217.
Soleman S, Yip PK, Duricki DA, Moon LD. Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain. 2012 Apr;135(Pt 4):1210-23. doi: 10.1093/brain/aws027. Epub 2012 Mar 6.
Stinear CM, Byblow WD. Predicting and accelerating motor recovery after stroke. Curr Opin Neurol. 2014 Dec;27(6):624-30. doi: 10.1097/WCO.0000000000000153.
Van Breukelen GJ. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies [corrected]. J Clin Epidemiol. 2006 Sep;59(9):920-5. doi: 10.1016/j.jclinepi.2006.02.007. Epub 2006 Jun 23.
Vickers AJ. Analysis of variance is easily misapplied in the analysis of randomized trials: a critique and discussion of alternative statistical approaches. Psychosom Med. 2005 Jul-Aug;67(4):652-5. doi: 10.1097/01.psy.0000172624.52957.a8.
Wade DT, Skilbeck CE, Wood VA, Langton Hewer R. Long-term survival after stroke. Age Ageing. 1984 Mar;13(2):76-82. doi: 10.1093/ageing/13.2.76.
Wahl AS, Omlor W, Rubio JC, Chen JL, Zheng H, Schroter A, Gullo M, Weinmann O, Kobayashi K, Helmchen F, Ommer B, Schwab ME. Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014 Jun 13;344(6189):1250-5. doi: 10.1126/science.1253050.
Wang CH, Hsieh CL, Dai MH, Chen CH, Lai YF. Inter-rater reliability and validity of the stroke rehabilitation assessment of movement (stream) instrument. J Rehabil Med. 2002 Jan;34(1):20-4. doi: 10.1080/165019702317242668.
Wang D, Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res. 2012 Jul;349(1):147-60. doi: 10.1007/s00441-012-1375-y. Epub 2012 Mar 23.
Zittel S, Weiller C, Liepert J. Citalopram improves dexterity in chronic stroke patients. Neurorehabil Neural Repair. 2008 May-Jun;22(3):311-4. doi: 10.1177/1545968307312173. Epub 2008 Jan 24.
Related Links
Access external resources that provide additional context or updates about the study.
Research breakthrough to revolutionize stroke treatment
Tracking Heart Disease and Stroke in Canada
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CTO #1465
Identifier Type: OTHER
Identifier Source: secondary_id
18-6002
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.