Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
38 participants
INTERVENTIONAL
2016-04-07
2017-11-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The narcolepy with cataplexy type 1 is the only disease with a specific orexin deficiency. Montpellier team have previously underlined in 15 patients with narcolepsy type 1 a normal level of Aβ42 in the CSF. The clinical expertise of the narcolepsy center suggested that the frequency of AD in old narcoleptic patients is low. The hypothesis was that patients with narcolepsy type 1 may be protected from amyloid brain lesions, hallmarks of the Alzheimer's process. The objective was to determine whether the brain amyloid load by PET-scan18 F-AV-45 measured with a semi-quantitative analysis (mean cortical SuVr) is lower in patients with narcolepsy type 1 older than 65 years-old than in cognitively normal age- and gender-matched controls.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
OTHER
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
NarCo
Narcolepsy type 1 over 65 years old
PET-scan18F-AV-45
The PET-scan18F-AV-45 is a PET-scan dedicated to analyze the amyloid load in the brain with the AV45 tracer by the measurement of the mean cortical SuVr
CoS
Cognitevement healthy controls
PET-scan18F-AV-45
PET-scan18F-AV-45 already done in another protocol MEMENTO-AMYging
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
PET-scan18F-AV-45
The PET-scan18F-AV-45 is a PET-scan dedicated to analyze the amyloid load in the brain with the AV45 tracer by the measurement of the mean cortical SuVr
PET-scan18F-AV-45
PET-scan18F-AV-45 already done in another protocol MEMENTO-AMYging
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients with narcolepsy type 1 older than 65 y.o. with orexin deficiency as required by international diagnosis criteria (ICSD3) with a follow-up in the national reference center for narcolepsy;
* Treated or not with psychostimulant drugs in relation to disease symptoms;
* Patients with CSF samples available or with scheduled lumbar puncture for diagnosis purpose;
* No contra-indications of the PET-scan18F-AV-45
* With a free and informed consent to participate to the study.
Control group:
* Subjects already included in the MEMENTO-AMYging and/or MAPT-AV45 ancillary studies in the memory center with normal cognitive tests after neuropsychological assessments especially in the episodic memory tests and the brain amyloid PET-scan18F-AV-45 data with SuVr measurements.
Exclusion Criteria
* No PET-scan18F-AV-45 data available
* No CSF samples
* Pathologies being life-threatening in a short term
* Patients deprived of freedom by court or administrative order
* Patients living in institution
* Major protected by the Law.
65 Years
85 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Montpellier
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Audrey Gabelle, MD, PhD
Role: STUDY_CHAIR
Montpellier University Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Montpellier University Hospital, Gui de Chauliac
Montpellier, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med. 2006 Jul;12(7):856-61. doi: 10.1038/nm1438. Epub 2006 Jun 25.
Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology. 2007 Feb 27;68(9):666-9. doi: 10.1212/01.wnl.0000256043.50901.e3.
Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 2010 Dec 24;330(6012):1774. doi: 10.1126/science.1197623. Epub 2010 Dec 9.
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224.
Mendelsohn AR, Larrick JW. Sleep facilitates clearance of metabolites from the brain: glymphatic function in aging and neurodegenerative diseases. Rejuvenation Res. 2013 Dec;16(6):518-23. doi: 10.1089/rej.2013.1530.
Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, Fujiki N, Nishino S, Holtzman DM. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009 Nov 13;326(5955):1005-7. doi: 10.1126/science.1180962. Epub 2009 Sep 24.
Coogan AN, Schutova B, Husung S, Furczyk K, Baune BT, Kropp P, Hassler F, Thome J. The circadian system in Alzheimer's disease: disturbances, mechanisms, and opportunities. Biol Psychiatry. 2013 Sep 1;74(5):333-9. doi: 10.1016/j.biopsych.2012.11.021. Epub 2012 Dec 28.
Wu YH, Zhou JN, Van Heerikhuize J, Jockers R, Swaab DF. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer's disease. Neurobiol Aging. 2007 Aug;28(8):1239-47. doi: 10.1016/j.neurobiolaging.2006.06.002. Epub 2006 Jul 11.
Mirmiran M, Swaab DF, Kok JH, Hofman MA, Witting W, Van Gool WA. Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and Alzheimer's disease. Prog Brain Res. 1992;93:151-62; discussion 162-3. doi: 10.1016/s0079-6123(08)64570-7.
Hoogendijk WJ, van Someren EJ, Mirmiran M, Hofman MA, Lucassen PJ, Zhou JN, Swaab DF. Circadian rhythm-related behavioral disturbances and structural hypothalamic changes in Alzheimer's disease. Int Psychogeriatr. 1996;8 Suppl 3:245-52; discussion 269-72. doi: 10.1017/s1041610297003426. No abstract available.
Dauvilliers YA, Lehmann S, Jaussent I, Gabelle A. Hypocretin and brain beta-amyloid peptide interactions in cognitive disorders and narcolepsy. Front Aging Neurosci. 2014 Jun 11;6:119. doi: 10.3389/fnagi.2014.00119. eCollection 2014.
Liguori C, Romigi A, Nuccetelli M, Zannino S, Sancesario G, Martorana A, Albanese M, Mercuri NB, Izzi F, Bernardini S, Nitti A, Sancesario GM, Sica F, Marciani MG, Placidi F. Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol. 2014 Dec;71(12):1498-505. doi: 10.1001/jamaneurol.2014.2510.
Slats D, Claassen JA, Verbeek MM, Overeem S. Reciprocal interactions between sleep, circadian rhythms and Alzheimer's disease: focus on the role of hypocretin and melatonin. Ageing Res Rev. 2013 Jan;12(1):188-200. doi: 10.1016/j.arr.2012.04.003. Epub 2012 Apr 30.
Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H, Yoneda H, Mignot E, Nishino S. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur J Neurosci. 2001 Oct;14(7):1075-81. doi: 10.1046/j.0953-816x.2001.01725.x.
Roh JH, Jiang H, Finn MB, Stewart FR, Mahan TE, Cirrito JR, Heda A, Snider BJ, Li M, Yanagisawa M, de Lecea L, Holtzman DM. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer's disease. J Exp Med. 2014 Dec 15;211(13):2487-96. doi: 10.1084/jem.20141788. Epub 2014 Nov 24.
Wennstrom M, Londos E, Minthon L, Nielsen HM. Altered CSF orexin and alpha-synuclein levels in dementia patients. J Alzheimers Dis. 2012;29(1):125-32. doi: 10.3233/JAD-2012-111655.
Gabelle A, Jaussent I, Bouallegue FB, Lehmann S, Lopez R, Barateau L, Grasselli C, Pesenti C, de Verbizier D, Beziat S, Mariano-Goulart D, Carlander B, Dauvilliers Y; Alzheimer's Disease Neuroimaging Initiative; Multi-Domain Intervention Alzheimer's Prevention Trial study groups. Reduced brain amyloid burden in elderly patients with narcolepsy type 1. Ann Neurol. 2019 Jan;85(1):74-83. doi: 10.1002/ana.25373. Epub 2018 Dec 19.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
9636
Identifier Type: -
Identifier Source: org_study_id