Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
200 participants
INTERVENTIONAL
2017-12-01
2022-09-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
A Trial of Plate Fixation Versus Tension Band Wire for Olecranon Fractures
NCT01391936
Treatment of Olecranon Fractures in the Elderly
NCT04670900
Treatment Reality of Tension Band Wiring and Locked Plate Fixation of the Olecranon
NCT06615999
TBW vs Plating in Olecranon Fractures
NCT05754320
The With Or Without Olecranon K-wires Trial
NCT05657899
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The incidence of proximal ulna fractures is 12 per 100.000, and 10 % of all fractures in the upper extremity involve the olecranon. There are several systems classifying olecranon fractures. One of the most frequently used is the Mayo classification system as described by Cabanela and Morrey. Tension band wiring (TBW) is the most common operative technique for the treatment of olecranon fractures, and is said to be the gold standard in the treatment of non-comminuted and minimally comminuted displaced olecranon fractures. Treatment with TBW has shown good clinical results, but due to the thin layer of tissue overlying the proximal ulna, hardware issues are common. The frequency of hardware removal following TBW has been reported as high as 82 %. Only two randomized trials have compared TBW and plate fixation of olecranon fractures. Hume and Wiss compared TBW with one-third tubular plate fixation. The authors found no significant functional differences between the treatment methods, but the rate of symptomatic hardware problems was higher in the group treated with TBW. The authors also noted that loss of reduction was higher in the TBW group at final follow-up (12 months after surgery). Duckworth found no difference in patient reported outcome after one year. The sophistication in plate fixation has evolved since Hume and Wiss published their 25 years ago. The use of locking stable plate fixation in the treatment of olecranon fractures is preferred by many surgeons, especially when treating osteoporotic individuals and in cases with severe fracture fragmentation. Though locking stable implants have shown to improve fragment fixation in biomechanical and cadaveric studies, better patient reported outcome in clinical studies has yet to be proven. It is still unclear if all comminuted fractures should be treated with plate fixation, or if moderately comminuted fractures can be treated with TBW. Hardware related issues following plate fixation have also been described as a frequent problem, and rates of hardware removal up to 56 % have been reported. When approaching the issue of symptomatic hardware problems following TBW and plate fixation, one must take into consideration that the magnitude of secondary surgery is different. The removal of the two K-wires is less extensive than removing an angular stable plate fixation. Removal of symptomatic pin protrusion can be achieved in local anesthesia at the outpatient clinic, whereas plate removal routinely is done in the operating theatre, and usually requires that patient is in regional or general anesthesia. Of course, if the wire cerclage has to be removed in addition to the K-wires, the scope of the procedure is more comparable. There are strong indications that locking plate fixation yield better results when treating severely comminuted olecranon fractures, but the investigators do not know if these modern implants are superior in the treatment of moderately comminuted fractures. Even so, there is a trend toward treating all comminuted olecranon fractures with plate fixation, but the clinical evidence supporting this is limited. The investigators believe there is a need for a robust investigation in the treatment of olecranon fractures to identify the fracture patterns that adequately can be treated with TBW and the ones that should be treated with locking plate fixation.
Study aims:
The investigators want to compare an angular stable plate fixation with TBW in a randomized, controlled multi-center trial. Our hypothesis is that TBW is non-inferior in the treatment of Mayo type IIA and IIB fractures compared with an angular stable implant. The primary outcome measure is the Quick Disability of the Arm, Shoulder and Hand outcome measure (QuickDASH) at 12 months
Study design and methodology:
The study is a randomized, controlled, multicenter trial. Adult patients (18-75 years) admitted with a displaced olecranon fracture in need of surgery will be randomized to either TBW or plate fixation. The design is semi-blinded. At follow-up, an independent investigator will perform an interview and blinded functional examination, followed by an un-blinded examination and interview. Patients will be recruited at the Oslo University Hospital, and other hospitals in the region has been invited to participate in the trial. An experienced trauma surgeon will verify that the fracture meets the inclusion criteria, and the patient will be given thorough oral and written information. After signed consent, the randomization allocation to treatment method will be performed by means of a web-solution made by NTNU WebCRF system with the approval from the OUS Head of Patient Security. To secure an even dispersion in regard to age of the patients and fracture pattern, the inclusion of study patients will be stratified. This will achieve an equal randomization dispersion of patients in in the age interval from 18 to 50 years, and 50 to 75 years. Comminuted and non-comminuted fracture fractures will be randomized in the same fashion.
Power analysis and sample size:
Using the mean value of QuickDASH following olecranon fracture in a similar population, the investigators found the standard deviation (SD) to equal 12 points. The minimal clinical important difference (MCID) has been set to 8 points, and the non-inferiority limit is DASH reduction of 10 points. Level of significance (α) equals 0.05. To prove non-inferiority, a power of 0.90 and with non-inferiority limit at 10, the number required in each group is 39 patients. Taking into account a predicted loss of patients during follow-up, the investigators aim to include at least 45 patients in each group.
Follow-up:
The study patients will be followed-up over a one year period (6 weeks, 12 weeks, 12 months). The rate of hardware removal in both groups will be recorded, and the indication for removal (pain, skin protrusion/wound problems, nerve irritation etc.) will be registered and categorized. All other reoperations will be recorded as well.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Tension band wiring (TBW)
TBW following the AO principles with 2 x 1.6 mm K-wires and wire wire cerclage.
Tension band wiring (TBW)
2 x K-wire fixation (1.6 mm) and wire cerclage.
Plate fixation
Olecranon fractures in this arm are fixed with Synthes´ VA-LCP Olecranon Plates 2.7/3.5.
Plate fixation
Plate fixation with Syntes VA-LCP olecranon plates 2.7/3.5
Tension band wiring (TBW)
2 x K-wire fixation (1.6 mm) and wire cerclage.
Plate fixation
Olecranon fractures in this arm are fixed with Synthes´ VA-LCP Olecranon Plates 2.7/3.5.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Tension band wiring (TBW)
2 x K-wire fixation (1.6 mm) and wire cerclage.
Plate fixation
Olecranon fractures in this arm are fixed with Synthes´ VA-LCP Olecranon Plates 2.7/3.5.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Unable to receive oral and written information.
* Concomitant fracture in the injured extremity.
* When the olecranon fracture extends distal to the coronoid process.
* Previous injury or illness in the injured upper extremity with permanent reduced elbow function.
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Oslo University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Kaare Sourin Midtgaard
Consultant orthopedic surgeon
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Oslo University Hospital
Oslo, Oslo County, Norway
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Duckworth AD, Clement ND, White TO, Court-Brown CM, McQueen MM. Plate Versus Tension-Band Wire Fixation for Olecranon Fractures: A Prospective Randomized Trial. J Bone Joint Surg Am. 2017 Aug 2;99(15):1261-1273. doi: 10.2106/JBJS.16.00773.
Hume MC, Wiss DA. Olecranon fractures. A clinical and radiographic comparison of tension band wiring and plate fixation. Clin Orthop Relat Res. 1992 Dec;(285):229-35.
Buijze G, Kloen P. Clinical evaluation of locking compression plate fixation for comminuted olecranon fractures. J Bone Joint Surg Am. 2009 Oct;91(10):2416-20. doi: 10.2106/JBJS.H.01419.
Chalidis BE, Sachinis NC, Samoladas EP, Dimitriou CG, Pournaras JD. Is tension band wiring technique the "gold standard" for the treatment of olecranon fractures? A long term functional outcome study. J Orthop Surg Res. 2008 Feb 22;3:9. doi: 10.1186/1749-799X-3-9.
Duckworth AD, Clement ND, Aitken SA, Court-Brown CM, McQueen MM. The epidemiology of fractures of the proximal ulna. Injury. 2012 Mar;43(3):343-6. doi: 10.1016/j.injury.2011.10.017. Epub 2011 Nov 9.
Baecher N, Edwards S. Olecranon fractures. J Hand Surg Am. 2013 Mar;38(3):593-604. doi: 10.1016/j.jhsa.2012.12.036.
Edwards SG, Martin BD, Fu RH, Gill JM, Nezhad MK, Orr JA, Ferrucci AM, Love JM, Booth R, Singer A, Hsieh AH. Comparison of olecranon plate fixation in osteoporotic bone: do current technologies and designs make a difference? J Orthop Trauma. 2011 May;25(5):306-11. doi: 10.1097/BOT.0b013e3181f22465.
Karlsson MK, Hasserius R, Karlsson C, Besjakov J, Josefsson PO. Fractures of the olecranon: a 15- to 25-year followup of 73 patients. Clin Orthop Relat Res. 2002 Oct;(403):205-12.
Matar HE, Ali AA, Buckley S, Garlick NI, Atkinson HD. Surgical interventions for treating fractures of the olecranon in adults. Cochrane Database Syst Rev. 2014 Nov 26;2014(11):CD010144. doi: 10.1002/14651858.CD010144.pub2.
Rommens PM, Kuchle R, Schneider RU, Reuter M. Olecranon fractures in adults: factors influencing outcome. Injury. 2004 Nov;35(11):1149-57. doi: 10.1016/j.injury.2003.12.002.
Snoddy MC, Lang MF, An TJ, Mitchell PM, Grantham WJ, Hooe BS, Kay HF, Bhatia R, Thakore RV, Evans JM, Obremskey WT, Sethi MK. Olecranon fractures: factors influencing re-operation. Int Orthop. 2014 Aug;38(8):1711-6. doi: 10.1007/s00264-014-2378-y. Epub 2014 Jun 4.
Tarallo L, Mugnai R, Adani R, Capra F, Zambianchi F, Catani F. Simple and comminuted displaced olecranon fractures: a clinical comparison between tension band wiring and plate fixation techniques. Arch Orthop Trauma Surg. 2014 Aug;134(8):1107-14. doi: 10.1007/s00402-014-2021-9. Epub 2014 Jun 17.
Wagner FC, Konstantinidis L, Hohloch N, Hohloch L, Suedkamp NP, Reising K. Biomechanical evaluation of two innovative locking implants for comminuted olecranon fractures under high-cycle loading conditions. Injury. 2015;46(6):985-9. doi: 10.1016/j.injury.2015.02.010. Epub 2015 Feb 18.
Gruszka D, Arand C, Nowak T, Dietz SO, Wagner D, Rommens P. Olecranon tension plating or olecranon tension band wiring? A comparative biomechanical study. Int Orthop. 2015 May;39(5):955-60. doi: 10.1007/s00264-015-2703-0. Epub 2015 Feb 25.
Wilson J, Bajwa A, Kamath V, Rangan A. Biomechanical comparison of interfragmentary compression in transverse fractures of the olecranon. J Bone Joint Surg Br. 2011 Feb;93(2):245-50. doi: 10.1302/0301-620X.93B2.24613.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2017/671
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.