Clinical Study of Microchimerism and cfDNA as Biomarkers for Acute Rejection After Organ Transplantation
NCT ID: NCT03255265
Last Updated: 2017-08-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
950 participants
OBSERVATIONAL
2017-03-01
2021-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
It has been reported that microchimerization and donor free DNA levels are associated with rejection after organ transplantation, but these studies are mostly based on a small number of cases and the results of which re qualitative and can not provide a specific microchimerization rate due to limited detection techniques. Therefore, in order to clarify the role of microchimerism and the level of cell-free DNA in donor in organ transplantation tolerance, it is necessary to use a new generation of detection technology for multi-center study with large samples.
Clinical trial was used to evaluate the clinical prediction and diagnostic value of microchimerization rate and donor cfDNA for acute rejection after organ transplantation.
950 cases of organ transplantation, of which 600 cases of renal transplantation, 300 cases of liver transplantation and 50 cases of lung transplantation.8 ml peripheral blood was collected in 1 tubes with EDTA anticoagulation. The timing of the collection was as follows: Patients with routine treatment after transplantation were preformed once every one weeks for one months and then every 3 month until the one year. In case of acute rejection, the additional blood was collected once on the day of diagnosis, and once after the treatment remission. All the samples were detected for microchimerism and cfDNA.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
GEnomic Medicine in Kidney Transplantation Study
NCT06365411
Immune Monitoring and Assay Development in Organ Transplant Recipients
NCT01283295
Proteogenomic Biomarker Panels in a Serial Blood & Urine Monitoring Study of Kidney Transplant Recipients
NCT01289717
Study for Detection of Donor-derived Cell-free DNA After Renal Transplantation Using Devysers NGS-based Chimerism Assay.
NCT05226936
Analysis of Biopsies With Antibody Mediated Rejection According to the Therapy Response
NCT03430414
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Rejection is still the most common cause of early dysfunction after organ transplantation, and the mismatching of major histocompatibility antigens (MHC, human MHC, also known as HLA) of the donor and recipient is the major cause of rejection after transplantation. Therefore, the importance of matching in organ transplantation has been widely accepted. HLA typing and HLA high resolution typing are becoming more and more common. At the same time, the latest international research shows that low-resolution HLA typing in organ transplantation also can cause significant rejection, while HLA high-resolution typing, the future trend, can improve the overall survival rate. Furthermore, NGS high-throughput sequencing will push HLA high-resolution classification to a new height.
Besides HLA matching, recipients can set up specific immune tolerance to donor grafts which will significantly affect long-term survival after operation. A large number of experimental and clinical data have suggested that the microchimerism formation can successfully facilitate donor-specific immune tolerance after transplantation. Chimera refers to the condition of the cells from the donor and from the recipient coexist and move to each other as that the donor cells exist in the recipient body after receiving the allograft or xenograft transplantation and the recipient cells exist in the graft as well. Among them, microchimera refers to the low levels of donor cells (usually less than 0.01%) in the peripheral blood circulation of transplant recipients, which is commonly seen in the patients with solid organ transplantation. The concept of microchimerism was first proposed by Thomas Starzl in the Medicine School of University of Pittsburgh in the 1990s, which pointed out that between the microchimerism and transplant immune tolerance lie a possible cause and effect relationship. The long-standing presence of microchimerism can lead to the recipient's tolerance to the donor organ. The more passer-by cells the organ has, the more cells it shifts out, making it easier to form transplantation tolerance, which explains the phenomenon of the mildest rejection after liver transplantation.
Several methods have been found to induce microchimerism, including donor-specific transfusion, donor bone marrow cell infusion, donor leukocyte infusion, spleen slice combined with organ transplantation and so on.
The formation of microchimerism is probably one of the long-term survival mechanisms of the transplanted graft, and the detection of microchimerism after transplantation can effectively predict the immune tolerance and rejection of the graft, while there is no very effective quantitation method.. In addition, the relationship between microchimerism and immunotolerance remains questionable, such as to what level of the clinical microchimerism formation that suggests stable immune tolerance, and whether it is possible to determine the withdrawal of immunosuppressive agents by the detection of microchimerism and etc., these are urgent problems remained to be solved and clarified. Based on the Insertion Deletion (InDel) site combined with quantitative real-time polymerase chain reaction, the detection sensitivity can reach 0.001% to 0.01%, which can accurately quantify the microchimerism level and dynamically monitor microchimerism after the transplantation.
At the same time, scientists from Stanford University in the United States continued to report in 2014 and 2015 that using a new generation of high-throughput sequencing technology (NGS) to detect the level of donor derived cell free DNA(cf DNA) in blood plasma of recipients after cardiac and lung transplantation. The investigators found that the level of donor-derived cf DNA was significantly increased when acute or chronic rejection happens, thus it could be used as a marker to reflect rejection or graft injury.
It has been reported that microchimerization and donor-cfDNA levels are correlated with rejection after organ transplantation, but these studies are mostly based on a small number of cases and the results of which are qualitative or with low resolution value due to limited detection techniques thus can not provide a specific microchimerism rate.
Therefore, The investigators need to clarify the role of microchimerism and the level of donor -derived cf DNA during graft injury as well as rejection after transplantation using a new generation of detection technology for multi-center study with large sample size.
In this study, 950 cases of organ transplantation, of which 600 cases of renal transplantation, 300 cases of liver transplantation and 50 cases of lung transplantation will be recruited and detected. 8 ml peripheral blood will be collected in 1 tubes with EDTA anticoagulation. The time points of the collection are as follows: Patients with routine treatment after transplantation are preformed once a week for 1 month and then at 3, 6 and 12 months after transplantation. In case of acute rejection, the additional blood will be collected once on the day of diagnosis, and once after 7 days treatment remission. All the samples were detected for microchimerism and cfDNA.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Acute rejection
no interventions
no interventions
No acute rejection
no interventions
no interventions
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
no interventions
no interventions
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Recipients with no systemic acute or chronic infections, infectious diseases;
* Recipients with no severe systemic diseases and/or spiritual system diseases
* Recipients or families signed the consent form.
Exclusion Criteria
* Patients wait-listed for multiple organ transplantation
* Unable or unwilling to follow up regularly
18 Years
70 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
309th Hospital of Chinese People's Liberation Army
OTHER
Tianjin First Central Hospital
OTHER
RenJi Hospital
OTHER
Fudan University
OTHER
Ruijin Hospital
OTHER
First Affiliated Hospital, Sun Yat-Sen University
OTHER
Third Affiliated Hospital, Sun Yat-Sen University
OTHER
Huazhong University of Science and Technology
OTHER
West China Hospital
OTHER
Central South University
OTHER
The Third Xiangya Hospital of Central South University
OTHER
First Affiliated Hospital Xi'an Jiaotong University
OTHER
Qianfoshan Hospital
OTHER
Wuxi People's Hospital
OTHER
Second Affiliated Hospital of Guangzhou Medical University
OTHER
Fuzhou General Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Fuzhou General Hospital, Xiamen Univ Fuzhou, Fujian China
Fuzhou, Fujian, China
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Adams KM, Nelson JL. Microchimerism: an investigative frontier in autoimmunity and transplantation. JAMA. 2004 Mar 3;291(9):1127-31. doi: 10.1001/jama.291.9.1127.
Akamatsu Y, Ohkohchi N, Seya K, Satomi S. Analysis of bilirubin fraction in the bile for early diagnosis of acute rejection in living related liver transplantation. Tohoku J Exp Med. 1997 Jan;181(1):145-54. doi: 10.1620/tjem.181.145.
Aljurf M, Abalkhail H, Alseraihy A, Mohamed SY, Ayas M, Alsharif F, Alzahrani H, Al-Jefri A, Aldawsari G, Al-Ahmari A, Belgaumi AF, Walter CU, El-Solh H, Rasheed W, Albitar M. Chimerism Analysis of Cell-Free DNA in Patients Treated with Hematopoietic Stem Cell Transplantation May Predict Early Relapse in Patients with Hematologic Malignancies. Biotechnol Res Int. 2016;2016:8589270. doi: 10.1155/2016/8589270. Epub 2016 Feb 23.
Ascher NL. Microchimerism in organ transplantation. Liver Transpl Surg. 1995 Jan;1(1):43-6. doi: 10.1002/lt.500010109. No abstract available.
Avolio AW, Gozzo ML, Forni L, Agnes S, Colacicco L, Barbaresi G, Magalini SC, Castagneto M. Mitochondrial/cytoplasmic enzyme ratio for the diagnosis of acute rejection after liver transplantation: sensitivity and specificity. Transplant Proc. 1992 Dec;24(6):2572-3. No abstract available.
Bakr MA, Nagib AM, Donia AF. Induction immunosuppressive therapy in kidney transplantation. Exp Clin Transplant. 2014 Mar;12 Suppl 1:60-9. doi: 10.6002/ect.25liver.l58.
Bamgbola O. Metabolic consequences of modern immunosuppressive agents in solid organ transplantation. Ther Adv Endocrinol Metab. 2016 Jun;7(3):110-27. doi: 10.1177/2042018816641580. Epub 2016 Mar 30.
Beck J, Oellerich M, Schulz U, Schauerte V, Reinhard L, Fuchs U, Knabbe C, Zittermann A, Olbricht C, Gummert JF, Shipkova M, Birschmann I, Wieland E, Schutz E. Donor-Derived Cell-Free DNA Is a Novel Universal Biomarker for Allograft Rejection in Solid Organ Transplantation. Transplant Proc. 2015 Oct;47(8):2400-3. doi: 10.1016/j.transproceed.2015.08.035.
Biancofiore G, Pucci L, Cerutti E, Penno G, Pardini E, Esposito M, Bindi L, Pelati E, Romanelli A, Triscornia S, Salvadorini MP, Stratta C, Lanfranco G, Pellegrini G, Del Prato S, Salizzoni M, Mosca F, Filipponi F. Cystatin C as a marker of renal function immediately after liver transplantation. Liver Transpl. 2006 Feb;12(2):285-91. doi: 10.1002/lt.20657.
Capron A, Haufroid V, Wallemacq P. Intra-cellular immunosuppressive drugs monitoring: A step forward towards better therapeutic efficacy after organ transplantation? Pharmacol Res. 2016 Sep;111:610-618. doi: 10.1016/j.phrs.2016.07.027. Epub 2016 Jul 25.
Chen Y, Tai Q, Hong S, Kong Y, Shang Y, Liang W, Guo Z, He X. Pretransplantation soluble CD30 level as a predictor of acute rejection in kidney transplantation: a meta-analysis. Transplantation. 2012 Nov 15;94(9):911-8. doi: 10.1097/TP.0b013e31826784ad.
De Vlaminck I, Martin L, Kertesz M, Patel K, Kowarsky M, Strehl C, Cohen G, Luikart H, Neff NF, Okamoto J, Nicolls MR, Cornfield D, Weill D, Valantine H, Khush KK, Quake SR. Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13336-41. doi: 10.1073/pnas.1517494112. Epub 2015 Oct 12.
De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, Neff NF, Okamoto J, Bernstein D, Weisshaar D, Quake SR, Khush KK. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med. 2014 Jun 18;6(241):241ra77. doi: 10.1126/scitranslmed.3007803.
Delville M, Charreau B, Rabant M, Legendre C, Anglicheau D. Pathogenesis of non-HLA antibodies in solid organ transplantation: Where do we stand? Hum Immunol. 2016 Nov;77(11):1055-1062. doi: 10.1016/j.humimm.2016.05.021. Epub 2016 May 26.
Deschaseaux F, Delgado D, Pistoia V, Giuliani M, Morandi F, Durrbach A. HLA-G in organ transplantation: towards clinical applications. Cell Mol Life Sci. 2011 Feb;68(3):397-404. doi: 10.1007/s00018-010-0581-6. Epub 2010 Nov 20.
Dragun D, Catar R, Philippe A. Non-HLA antibodies in solid organ transplantation: recent concepts and clinical relevance. Curr Opin Organ Transplant. 2013 Aug;18(4):430-5. doi: 10.1097/MOT.0b013e3283636e55.
Dragun D, Hegner B. Non-HLA antibodies post-transplantation: clinical relevance and treatment in solid organ transplantation. Contrib Nephrol. 2009;162:129-39. doi: 10.1159/000170845. Epub 2008 Oct 31.
Duan Z, Zhang Y, Pan F, Zhang T, Zeng Z, Wang S, Li G, Shen B, Gao J. Association between CTLA4 gene polymorphisms and acute rejection of kidney transplantation: a meta-analysis. J Nephrol. 2012 Nov-Dec;25(6):996-1002. doi: 10.5301/jn.5000082.
Eigler J. [The acute rejection reaction following kidney transplantation. Diagnostic and therapeutic aspects]. Med Klin. 1978 Dec 1;73(48):1682-9. No abstract available. German.
Eikmans M, van Halteren AG, van Besien K, van Rood JJ, Drabbels JJ, Claas FH. Naturally acquired microchimerism: implications for transplantation outcome and novel methodologies for detection. Chimerism. 2014;5(2):24-39. doi: 10.4161/chim.28908.
Elahimehr R, Scheinok AT, McKay DB. Hematopoietic stem cells and solid organ transplantation. Transplant Rev (Orlando). 2016 Oct;30(4):227-34. doi: 10.1016/j.trre.2016.07.005. Epub 2016 Aug 3.
Espinel CH, Mendez-Picon G, Currier C, Novello A, Helfrich GB, Lee HM. FE Na effective in early diagnosis of acute rejection after kidney transplantation. Proc Clin Dial Transplant Forum. 1979;9:256-9. No abstract available.
Gambato M, Lens S, Fernandez-Carrillo C, Alfaro I, Forns X. Viral hepatitis and liver transplantation: pathogenesis, prevention and therapy of recurrent disease. Dig Dis. 2014;32(5):538-44. doi: 10.1159/000360831. Epub 2014 Jul 14.
Garcia Moreira V, Prieto Garcia B, Baltar Martin JM, Ortega Suarez F, Alvarez FV. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin Chem. 2009 Nov;55(11):1958-66. doi: 10.1373/clinchem.2009.129072. Epub 2009 Sep 3.
Germani G, Rodriguez-Castro K, Russo FP, Senzolo M, Zanetto A, Ferrarese A, Burra P. Markers of acute rejection and graft acceptance in liver transplantation. World J Gastroenterol. 2015 Jan 28;21(4):1061-8. doi: 10.3748/wjg.v21.i4.1061.
Gielis EM, Ledeganck KJ, De Winter BY, Del Favero J, Bosmans JL, Claas FH, Abramowicz D, Eikmans M. Cell-Free DNA: An Upcoming Biomarker in Transplantation. Am J Transplant. 2015 Oct;15(10):2541-51. doi: 10.1111/ajt.13387. Epub 2015 Jul 16.
Gierej B, Kobryn K, Gierej P, Gornicka B. C4d in acute rejection after liver transplantation and its usefulness in differential diagnosis between acute liver rejection and hepatitis C recurrence. Ann Transplant. 2014 Aug 1;19:373-81. doi: 10.12659/AOT.890234.
Gozzo ML, Avolio AW, Colacicco L, Agnes S, Forni F, Barbaresi G, Castagneto M. Mitochondrial liver enzymes and the ratio between mitochondrial and cytoplasmic enzymes in the differential diagnosis of acute rejection after liver transplantation. Transplant Proc. 1993 Apr;25(2):1760-1. No abstract available.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
cf-DNA
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.