Evaluation of Late Toxicity Following Intensity-Modulated Radiotherapy and Two Image-Guided Strategies With Corresponding Treatment Margins.
NCT ID: NCT03254420
Last Updated: 2025-10-01
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ACTIVE_NOT_RECRUITING
NA
74 participants
INTERVENTIONAL
2016-08-30
2028-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The aim of this study is to assess pelvic late toxicity rate after intensity-modulated radiotherapy (IMRT) when using the Calypso® System with a reduction of treatment margins. In this randomized study, patients will receive IGRT treatment using the Calypso system or a conventional IGRT treatment.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Daily Target Guided Radiation Therapy Using the Calypso 4D Localization System in Patients Who Have Had a Prostatectomy for Prostate Cancer
NCT01624623
Positioning and Tracking the Prostate During External Beam Radiation
NCT00123838
Reduced Planning Target Volume (PTV) Margins for the Treatment of Prostate Cancer Using the Calypso 4D Localization System
NCT01589939
The AIM Study: Assessing the Impact of Margin Reduction
NCT00754000
Prostate Cancer Stereotactic Radiotherapy
NCT02319239
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The Calypso® System (Varian Medical Systems, Inc., Palo Alto, CA) is a recent technology using electromagnetic transponders implanted within the prostate. It is a real-time target tracking system that takes into account both inter- and intrafractional target motion. So the exact position and movement of the prostate can be determined during radiation therapy treatment.
As Planned Target Volume (PTV) margins integrate set-up margins and the management of organ motion, margin reduction can reasonably be considered in case of target motion management improvement.
To date, no prospective randomized clinical data is available using this technique for the treatment of low- or intermediate-risk prostate cancer patients with modern standard fractionation radiotherapy and image guidance.
The aim of this study is to assess pelvic late toxicity rate after intensity-modulated radiotherapy (IMRT) when using the Calypso® System with a reduction of treatment margins. In this randomized study, patients will receive IGRT treatment using the Calypso system or a conventional IGRT treatment.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Image-guided radiation therapy (IGRT) with standard margins
moderate hypofractionation during 4 weeks
moderate hypofractionation Radiotherapy
moderate hypofractionation Radiotherapy
Calypso tracking system with margin reduction
moderate hypofractionation during 4 weeks after calypso beacon implant 10 days before
Calypso beacon implant
Calypso beacon implant before radiotherapy
moderate hypofractionation Radiotherapy
moderate hypofractionation Radiotherapy
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Calypso beacon implant
Calypso beacon implant before radiotherapy
moderate hypofractionation Radiotherapy
moderate hypofractionation Radiotherapy
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* No evidence of metastases (M0). No evidence of lymph nodes involvement (N0) (bilateral lymph node dissection is not mandatory if lymph node involvement risk is low according to the Partin tables).
* Low-risk or intermediate clinical stage according to the D'Amico classification (T1-T2 and Gleason \< 8 and PSA \< 20 ng/ml) (appendix 3).
* No grade \> 2 urinary or rectal clinical sign or symptom according to the CTCAE V4.03 scale.
* Performance status ECOG ≤ 1.
* No hip prosthesis or metallic vascular graft near the prostate.
* No endopenian stent.
* No pace maker, implanted defibrillator or neurostimulator.
* No allergy to local anesthetics.
* No irreversible anticoagulation or antiplatelet treatment for the implantation period.
* Pelvic and abdominal anatomy compatible with the use of the Calypso® system (predictive detector to fiducials distance less than 19 cm, evaluated on planning CT-scan) (distance from skin surface to prostate center less than 17 cm).
* Patient aged ≥ 18 and less than 80 years old.
* Dated and signed written informed consent available.
* Patients must be affiliated to a French Social Security System.
Exclusion Criteria
* Prior pelvic irradiation.
* Biopsy-proven seminal vesicle invasion.
* Prior bilateral orchiectomy.
* Prior radical prostatectomy.
* Other malignancy except adequately-treated basal cell carcinoma of the skin or other malignancy from which the patient has been disease-free for at least 5 years.
* Psychological, familial, sociological or geographical condition potentially hampering compliance with the study protocol and follow-up schedule; those conditions should be discussed with the patient before registration in the trial.
* Other uncontrolled systemic disease (cardiovascular, renal, liver, pulmonary embolism, etc.).
* Known VIH positive patients (no specific test needed).
* Known homozygote ATM Mutation (Ataxia telengiectasia).
18 Years
80 Years
MALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Institut du Cancer de Montpellier - Val d'Aurelle
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Riou Olivier
Role: STUDY_CHAIR
Institut régional du Cancer de Montpellier
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Institut regional du Cancer - Val d Aurelle
Montpellier, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Jereczek-Fossa BA, Orecchia R. Evidence-based radiation oncology: definitive, adjuvant and salvage radiotherapy for non-metastatic prostate cancer. Radiother Oncol. 2007 Aug;84(2):197-215. doi: 10.1016/j.radonc.2007.04.013. Epub 2007 May 29.
Zaorsky NG, Harrison AS, Trabulsi EJ, Gomella LG, Showalter TN, Hurwitz MD, Dicker AP, Den RB. Evolution of advanced technologies in prostate cancer radiotherapy. Nat Rev Urol. 2013 Oct;10(10):565-79. doi: 10.1038/nrurol.2013.185. Epub 2013 Sep 10.
Budaus L, Bolla M, Bossi A, Cozzarini C, Crook J, Widmark A, Wiegel T. Functional outcomes and complications following radiation therapy for prostate cancer: a critical analysis of the literature. Eur Urol. 2012 Jan;61(1):112-27. doi: 10.1016/j.eururo.2011.09.027. Epub 2011 Oct 6.
Ohri N, Dicker AP, Showalter TN. Late toxicity rates following definitive radiotherapy for prostate cancer. Can J Urol. 2012 Aug;19(4):6373-80.
Pardo Y, Guedea F, Aguilo F, Fernandez P, Macias V, Marino A, Hervas A, Herruzo I, Ortiz MJ, Ponce de Leon J, Craven-Bratle J, Suarez JF, Boladeras A, Pont A, Ayala A, Sancho G, Martinez E, Alonso J, Ferrer M. Quality-of-life impact of primary treatments for localized prostate cancer in patients without hormonal treatment. J Clin Oncol. 2010 Nov 1;28(31):4687-96. doi: 10.1200/JCO.2009.25.3245. Epub 2010 Oct 4.
de Crevoisier R, Fiorino C, Dubray B. [Dosimetric factors predictive of late toxicity in prostate cancer radiotherapy]. Cancer Radiother. 2010 Oct;14(6-7):460-8. doi: 10.1016/j.canrad.2010.07.225. Epub 2010 Aug 24. French.
Valdagni R, Rancati T, Fiorino C. Predictive models of toxicity with external radiotherapy for prostate cancer: clinical issues. Cancer. 2009 Jul 1;115(13 Suppl):3141-9. doi: 10.1002/cncr.24356.
Yu JB. Hypofractionated Radiotherapy for Prostate Cancer: Further Evidence to Tip the Scales. J Clin Oncol. 2017 Jun 10;35(17):1867-1869. doi: 10.1200/JCO.2017.72.7016. Epub 2017 Mar 29. No abstract available.
Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, Graham J, Kirkbride P, Logue J, Malik Z, Money-Kyrle J, O'Sullivan JM, Panades M, Parker C, Patterson H, Scrase C, Staffurth J, Stockdale A, Tremlett J, Bidmead M, Mayles H, Naismith O, South C, Gao A, Cruickshank C, Hassan S, Pugh J, Griffin C, Hall E; CHHiP Investigators. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016 Aug;17(8):1047-1060. doi: 10.1016/S1470-2045(16)30102-4. Epub 2016 Jun 20.
Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, Shah AB, D'Souza DP, Michalski JM, Dayes IS, Seaward SA, Hall WA, Nguyen PL, Pisansky TM, Faria SL, Chen Y, Koontz BF, Paulus R, Sandler HM. Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J Clin Oncol. 2016 Jul 10;34(20):2325-32. doi: 10.1200/JCO.2016.67.0448. Epub 2016 Apr 4.
Incrocci L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, Krol S, van der Toorn PP, Jager H, Heemsbergen W, Heijmen B, Pos F. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016 Aug;17(8):1061-1069. doi: 10.1016/S1470-2045(16)30070-5. Epub 2016 Jun 20.
Arcangeli G, Saracino B, Arcangeli S, Gomellini S, Petrongari MG, Sanguineti G, Strigari L. Moderate Hypofractionation in High-Risk, Organ-Confined Prostate Cancer: Final Results of a Phase III Randomized Trial. J Clin Oncol. 2017 Jun 10;35(17):1891-1897. doi: 10.1200/JCO.2016.70.4189. Epub 2017 Mar 29.
Catton CN, Lukka H, Gu CS, Martin JM, Supiot S, Chung PWM, Bauman GS, Bahary JP, Ahmed S, Cheung P, Tai KH, Wu JS, Parliament MB, Tsakiridis T, Corbett TB, Tang C, Dayes IS, Warde P, Craig TK, Julian JA, Levine MN. Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J Clin Oncol. 2017 Jun 10;35(17):1884-1890. doi: 10.1200/JCO.2016.71.7397. Epub 2017 Mar 15.
Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, Fanti S, Fossati N, Gandaglia G, Gillessen S, Grivas N, Grummet J, Henry AM, van der Kwast TH, Lam TB, Lardas M, Liew M, Mason MD, Moris L, Oprea-Lager DE, van der Poel HG, Rouviere O, Schoots IG, Tilki D, Wiegel T, Willemse PM, Cornford P. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2021 Feb;79(2):243-262. doi: 10.1016/j.eururo.2020.09.042. Epub 2020 Nov 7.
Rodin D, Tawk B, Mohamad O, Grover S, Moraes FY, Yap ML, Zubizarreta E, Lievens Y. Hypofractionated radiotherapy in the real-world setting: An international ESTRO-GIRO survey. Radiother Oncol. 2021 Apr;157:32-39. doi: 10.1016/j.radonc.2021.01.003. Epub 2021 Jan 14.
Chapet O, Decullier E, Bin S, Faix A, Ruffion A, Jalade P, Fenoglietto P, Udrescu C, Enachescu C, Azria D. Prostate hypofractionated radiation therapy with injection of hyaluronic acid: acute toxicities in a phase 2 study. Int J Radiat Oncol Biol Phys. 2015 Mar 15;91(4):730-6. doi: 10.1016/j.ijrobp.2014.11.027.
Palombarini M, Mengoli S, Fantazzini P, Cadioli C, Degli Esposti C, Frezza GP. Analysis of inter-fraction setup errors and organ motion by daily kilovoltage cone beam computed tomography in intensity modulated radiotherapy of prostate cancer. Radiat Oncol. 2012 Apr 2;7:56. doi: 10.1186/1748-717X-7-56.
Tanyi JA, He T, Summers PA, Mburu RG, Kato CM, Rhodes SM, Hung AY, Fuss M. Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. Int J Radiat Oncol Biol Phys. 2010 Dec 1;78(5):1579-85. doi: 10.1016/j.ijrobp.2010.02.001. Epub 2010 May 14.
Nguyen NP, Davis R, Bose SR, Dutta S, Vinh-Hung V, Chi A, Godinez J, Desai A, Woods W, Altdorfer G, D'Andrea M, Karlsson U, Vo RA, Sroka T; International Geriatric Radiotherapy Group. Potential applications of image-guided radiotherapy for radiation dose escalation in patients with early stage high-risk prostate cancer. Front Oncol. 2015 Feb 2;5:18. doi: 10.3389/fonc.2015.00018. eCollection 2015.
Crehange G, Martin E, Supiot S, Chapet O, Mazoyer F, Naudy S, Maingon P. [Image-guided radiotherapy in prostate cancer: concepts and implications]. Cancer Radiother. 2012 Sep;16(5-6):430-8. doi: 10.1016/j.canrad.2012.07.183. Epub 2012 Aug 23. French.
Bernchou U, Agergaard SN, Brink C. Radiopaque marker motion during pre-treatment CBCT as a predictor of intra-fractional prostate movement. Acta Oncol. 2013 Aug;52(6):1168-74. doi: 10.3109/0284186X.2012.747698. Epub 2012 Dec 17.
Badakhshi H, Wust P, Budach V, Graf R. Image-guided radiotherapy with implanted markers and kilovoltage imaging and 6-dimensional position corrections for intrafractional motion of the prostate. Anticancer Res. 2013 Sep;33(9):4117-21.
Tong X, Chen X, Li J, Xu Q, Lin MH, Chen L, Price RA, Ma CM. Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system. J Appl Clin Med Phys. 2015 Mar 8;16(2):5013. doi: 10.1120/jacmp.v16i2.5013.
Das S, Liu T, Jani AB, Rossi P, Shelton J, Shi Z, Khan MK. Comparison of image-guided radiotherapy technologies for prostate cancer. Am J Clin Oncol. 2014 Dec;37(6):616-23. doi: 10.1097/COC.0b013e31827e4eb9.
Foster RD, Pistenmaa DA, Solberg TD. A comparison of radiographic techniques and electromagnetic transponders for localization of the prostate. Radiat Oncol. 2012 Jun 21;7:101. doi: 10.1186/1748-717X-7-101.
Korreman S, Rasch C, McNair H, Verellen D, Oelfke U, Maingon P, Mijnheer B, Khoo V. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother Oncol. 2010 Feb;94(2):129-44. doi: 10.1016/j.radonc.2010.01.004. Epub 2010 Feb 12.
Santanam L, Malinowski K, Hubenshmidt J, Dimmer S, Mayse ML, Bradley J, Chaudhari A, Lechleiter K, Goddu SK, Esthappan J, Mutic S, Low DA, Parikh P. Fiducial-based translational localization accuracy of electromagnetic tracking system and on-board kilovoltage imaging system. Int J Radiat Oncol Biol Phys. 2008 Mar 1;70(3):892-9. doi: 10.1016/j.ijrobp.2007.10.005.
Langen KM, Willoughby TR, Meeks SL, Santhanam A, Cunningham A, Levine L, Kupelian PA. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys. 2008 Jul 15;71(4):1084-90. doi: 10.1016/j.ijrobp.2007.11.054. Epub 2008 Feb 14.
Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M 3rd, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys. 2006 Jun 1;65(2):528-34. doi: 10.1016/j.ijrobp.2006.01.050.
Mayyas E, Chetty IJ, Chetvertkov M, Wen N, Neicu T, Nurushev T, Ren L, Lu M, Stricker H, Pradhan D, Movsas B, Elshaikh MA. Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: a prospective study. Med Phys. 2013 Apr;40(4):041707. doi: 10.1118/1.4794502.
Noel C, Parikh PJ, Roy M, Kupelian P, Mahadevan A, Weinstein G, Enke C, Flores N, Beyer D, Levine L. Prediction of intrafraction prostate motion: accuracy of pre- and post-treatment imaging and intermittent imaging. Int J Radiat Oncol Biol Phys. 2009 Mar 1;73(3):692-8. doi: 10.1016/j.ijrobp.2008.04.076. Epub 2008 Aug 7.
Zhu M, Bharat S, Michalski JM, Gay HA, Hou WH, Parikh PJ. Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2013 Mar 15;85(4):1038-44. doi: 10.1016/j.ijrobp.2012.08.001. Epub 2012 Sep 25.
Su Z, Zhang L, Murphy M, Williamson J. Analysis of prostate patient setup and tracking data: potential intervention strategies. Int J Radiat Oncol Biol Phys. 2011 Nov 1;81(3):880-7. doi: 10.1016/j.ijrobp.2010.07.1978. Epub 2010 Oct 8.
Kupelian P, Willoughby T, Mahadevan A, Djemil T, Weinstein G, Jani S, Enke C, Solberg T, Flores N, Liu D, Beyer D, Levine L. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys. 2007 Mar 15;67(4):1088-98. doi: 10.1016/j.ijrobp.2006.10.026. Epub 2006 Dec 21.
Klayton T, Price R, Buyyounouski MK, Sobczak M, Greenberg R, Li J, Keller L, Sopka D, Kutikov A, Horwitz EM. Prostate bed motion during intensity-modulated radiotherapy treatment. Int J Radiat Oncol Biol Phys. 2012 Sep 1;84(1):130-6. doi: 10.1016/j.ijrobp.2011.11.041. Epub 2012 Feb 11.
Mantz C. A Phase II Trial of Stereotactic Ablative Body Radiotherapy for Low-Risk Prostate Cancer Using a Non-Robotic Linear Accelerator and Real-Time Target Tracking: Report of Toxicity, Quality of Life, and Disease Control Outcomes with 5-Year Minimum Follow-Up. Front Oncol. 2014 Nov 14;4:279. doi: 10.3389/fonc.2014.00279. eCollection 2014.
Sandler HM, Liu PY, Dunn RL, Khan DC, Tropper SE, Sanda MG, Mantz CA. Reduction in patient-reported acute morbidity in prostate cancer patients treated with 81-Gy Intensity-modulated radiotherapy using reduced planning target volume margins and electromagnetic tracking: assessing the impact of margin reduction study. Urology. 2010 May;75(5):1004-8. doi: 10.1016/j.urology.2009.10.072. Epub 2010 Feb 13.
Ozsahin M, Crompton NE, Gourgou S, Kramar A, Li L, Shi Y, Sozzi WJ, Zouhair A, Mirimanoff RO, Azria D. CD4 and CD8 T-lymphocyte apoptosis can predict radiation-induced late toxicity: a prospective study in 399 patients. Clin Cancer Res. 2005 Oct 15;11(20):7426-33. doi: 10.1158/1078-0432.CCR-04-2634.
Azria D, Betz M, Bourgier C, Jeanneret Sozzi W, Ozsahin M. Identifying patients at risk for late radiation-induced toxicity. Crit Rev Oncol Hematol. 2012 Dec;84 Suppl 1:e35-41. doi: 10.1016/j.critrevonc.2010.08.003. Epub 2010 Sep 24.
Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, Filiberti A, Flechtner H, Fleishman SB, de Haes JC, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993 Mar 3;85(5):365-76. doi: 10.1093/jnci/85.5.365.
Rosen RC, Riley A, Wagner G, Osterloh IH, Kirkpatrick J, Mishra A. The international index of erectile function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology. 1997 Jun;49(6):822-30. doi: 10.1016/s0090-4295(97)00238-0.
Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Arch Public Health. 2014 Nov 10;72(1):39. doi: 10.1186/2049-3258-72-39. eCollection 2014.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ICM-URC2015/33
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.