Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
PHASE1
12 participants
INTERVENTIONAL
2016-04-01
2024-07-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
A frequent late complication of RYGB is the dumping syndrome and a rare late complication is hyperinsulinaemic hypoglycemia (HH). Reported incidences of dumping syndrome range from 20 to 70% of the patients. Dumping is a condition where food enters the small bowel too rapidly and can be divided into early and late dumping. Early dumping is due to rapid gastric emptying and comprises intestinal and vasomotor symptoms within minutes after food ingestion. Late dumping occurs 1 to 3 hours after a meal and the symptoms are partly caused by hypoglycemia.
Reported incidences of HH range from 0.2 to 1% after RYGB and is observed after gastric bypass procedures only. In HH plasma glucose concentrations reach values below 50 mg/dL (2.8 mmol/L) and adrenergic and neuroglucopenic symptoms occur, often occurring after a meal. After a meal or glucose challenge an early large glucose peak followed by an insulin peak is observed in HH patients. Additionally, an increased postprandial GLP1 level compared to RYGB controls without HH was observed. Low plasma glucose levels are also found in asymptomatic patients after RYGB in 30 to 50% of the patients.
The underlying mechanism of HH is not completely understood and several potential causes have been proposed, including, 1) An inappropriate increase of beta cell mass and function, that is persisting despite the increased insulin sensitivity after RYGB, 2) late dumping syndrome, i.e. an inappropriate insulin secretion following rapid food entry into the small intestine, 3) an inappropriate counter-regulatory glucagon response and 4) post-RYGB an increase in the incretin secretion (GLP1 and GIP).
Besides stimulation of the postprandial insulin secretion, GLP1 may induce beta cell hypertrophy or an increase in the number of beta cells by inhibiting apoptosis and increasing replication. Nesidioblastosis (beta cell hypertrophy, islet hyperplasia and increased beta cell mass) is associated with HH after RYGB in some cases, however, nesidioblastosis was not found in these patients and an overexpression of GLP1-receptors in individual islets was not found.
Proposed treatment options for HH after RYGB include diet therapy with a low-carbohydrate diet, drug therapy to inhibit carbohydrate digestion (acarbose) or to inhibit insulin secretion by beta cells (e.g. diaxozide, octreotide, pasireotide) or surgical treatment by a reconstruction of the gastric bypass or by a partial pancreatectomy. The effectiveness of these therapies vary among patients, we expect that the effectiveness of different treatments depends on the underlying cause of HH.
The different possible underlying mechanisms and different types of treatment suggest diverse causes of HH. In order to increase the insight in these causes and to be able to determine the best treatment for each patient in the future, the underlying cause(s) will be examined first in this study. In previous studies that assessed beta cell mass, only only pathological assessment of pancreas specimens was performed, because in vivo assessment was impossible. The control group was determined from patients undergoing a (partial) pancreatectomy for other diseases or post-mortem. However, ideally the control group would consist of patients who have had RYGB as well, without developing HH.
Recently, it became possible to assess beta cell mass in vivo by SPECT and PET imaging. In this study it is examined if this imaging technique can detect an increase in beta cell mass in patients suffering from persisting HH after RYGB. For this purpose we will compare beta cell mass in patients with and without HH after RYGB. Additionally, beta cell function and postprandial incretin responses will be determined in these subjects.
The results of this pilot study may lead to improved diagnostics and treatment options for persisting HH in bariatric patients in future.
Imaging of beta cells in vivo by GLP-1 receptor imaging by PET For specific non-invasive imaging of beta cells, investogators have developed a highly beta cell-specific radiolabeled exendin-based GLP-1 (glucagon-like peptide-1) analog which, after radiolabeling, can non-invasively be detected in the human body. GLP-1 is an incretin hormone that specifically binds to beta cells and is responsible for post-prandial insulin-secretion. Its specificity for beta cells has been shown and a linear correlation of the beta cell mass and the signal obtained with this tracer has been established.
GLP-1R imaging has been shown to be suitable for imaging of insulin producing pancreatic neuroendocrine tumours (IPPNET). Furthermore, the feasibility of visualization of transplanted beta cells with GLP-1R imaging has been shown by imaging of autologous islets transplanted into muscle.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Hypoglycemia
Patients with hypoglycemia after gastric bypass
68Ga-NODAGA-exendin-4 PET/CT
68Ga-NODAGA-exendin-4 PET/CT scan
Control
Patients without hypoglycemia after gastric bypass
68Ga-NODAGA-exendin-4 PET/CT
68Ga-NODAGA-exendin-4 PET/CT scan
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
68Ga-NODAGA-exendin-4 PET/CT
68Ga-NODAGA-exendin-4 PET/CT scan
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Signed informed consent
* \> 18
Additional for matched control group:
* RYGB at least 2 years ago
* Normal glucose levels before and after RYGB
* Score \<7 on Sigstad's scoring system
* Individual matched to HH group on age
Exclusion Criteria
* Anti-diabetic medication in the past 6 months
* Treatment with synthetic exendin in the past 6 months
* Liver failure
* Pregnancy
* Breast feeding
* Kidney failure
* Age \< 18
* No signed informed consent
Additional for matched control group:
* Any diabetic history
* Previous diagnosed HH
* Sigstad's dumping score \>7
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Rijnstate Hospital
OTHER
Radboud University Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Rijnstate hospital
Arnhem, Gelderland, Netherlands
Radboudumc
Nijmegen, Gelderland, Netherlands
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Laura Deden, Msc
Role: primary
Marti Boss, Msc
Role: primary
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NL51854.091.15
Identifier Type: -
Identifier Source: org_study_id