T-Lymphocytes for Prevention or Treatment of Viral Infections Following Hematopoietic Stem Cell Transplantation

NCT ID: NCT03180216

Last Updated: 2025-01-29

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ACTIVE_NOT_RECRUITING

Clinical Phase

PHASE1

Total Enrollment

32 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-02-15

Study Completion Date

2026-11-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

This Phase I dose-escalation trial is designed to evaluate the safety of rapidly generated multivirus-specific T-cell products with antiviral activity against CMV, EBV, adenovirus, HHV6, BK virus, JC virus, and human parainfluenza-3 (HPIV3), derived from eligible HSCT donors.

In this trial, we will utilize a rapid generation protocol for broad spectrum multivirus-specific T cells for infusion to recipients of allogeneic hematopoietic stem cell transplant (HSCT), who are at risk of developing EBV, CMV, adenovirus, HHV6, BKV, JCV and/or HPIV3, or with PCR/culture confirmed active infection(s) of EBV, CMV, adenovirus, HHV6, BKV, JCV, and/or HPIV3 that has failed to resolve with at least 14 days of standard antiviral therapy (if available and tolerated). These cells will be derived from HSCT donors, and the study agent will be assessed at each dose for evidence of dose-limiting toxicities (DLT).

This study will have two arms: Arm A will include patients who receive prophylactic treatment, and Arm B will include patients who receive VSTs for one or more active infections with targeted viruses. Determination of the study arm will be determined by the patient's clinical status. Study arms will each be analyzed for safety endpoints and secondary endpoints.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Viral infections are normally controlled by T-cell immunity and are a cause of significant morbidity and mortality during the period of immune recovery after hematopoietic stem cell transplantation (HSCT). Risk for infection is impacted by the degree of tissue mismatch between donor and recipient and the immune status of the donor, including the degree and length of immunosuppression following transplantation. Reactivation of latent viruses such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and Human Herpesvirus 6B (HHV6) are common and often cause symptomatic disease. Reactivations of the polyomaviruses BK virus and JC virus are also common and frequently cause renal disease including hemorrhagic cystitis and less commonly neurologic disease (pervasive multifocal leukoencephalopathy). Respiratory viruses such as adenovirus and human parainfluenza also frequently cause infection. Antiviral pharmacologic agents are only effective against some of these viruses; their use is costly, and associated with significant toxicities and the outgrowth of drug-resistant mutants. As delay in recovery of virus-specific cellular immune response is clearly associated with viral reactivation and disease in these patients, cellular immunotherapy to restore viral-specific immunity is an attractive option that has already been successfully used to target several of these viruses.

To broaden the specificity of single T cells lines to include the three most common viral pathogens of stem cell recipients, the investigators reactivated CMV and adenovirus-specific T cells by using mononuclear cells transduced with a recombinant adenoviral vector encoding the CMV antigen pp65 (Ad5f35CMVpp65). Subsequent stimulations with EBV-LCL transduced with the same vector both reactivated EBV-specific T cells and maintained the expansion of the activated adenovirus and CMV-specific T cells. This method reliably produced T cells with cytotoxic function specific for all three viruses, which the investigators infused into 14 stem cell recipients in a Phase I prophylaxis study. The investigators observed recovery of immunity to CMV and EBV in all patients but an increase in adenovirus-specific T cells was only seen in patients who had evidence of adenovirus infection pre-infusion. A follow-up study in which the frequency of adenovirus-specific T cells was increased in the infused T cells produced similar results, thus highlighting the importance of endogenous antigen to promote the expansion of infused T cells in vivo. Nevertheless, all patients in both clinical trials with pre-infusion CMV, adenovirus or EBV infection or reactivation were able to clear the infection, including one patient with severe adenoviral pneumonia requiring ventilatory support. T cells recognizing multiple antigens can therefore produce clinically relevant effects against all three viruses.

Recent studies have extended the number of targeted viruses, and included HHV6B, BK virus, and Varicella-zoster virus (VZV). In a recent study, 11 patients were treated with VST targeting 5-viruses (CMV, EBV, Adv, HHV6B, BKV) which were generated using a rapid protocol with overlapping peptides encompassing 12 viral protein. VST infusion resulted in a 94% antiviral response rate in these patients (complete or partial responses against CMV=3/3, EBV=5/5, Adv=1/1, HHV6B=2/2, BKV=6/7). Two of the patients who received 5-virus VST developed transplant-associated microangiopathy, which was deemed secondary to HSCT and unrelated to VST infusion. One of these patients developed grade II skin GVHD, which improved with topical therapy. In another recent study, ten adult patients were prophylactically treated with VST specific for CMV, EBV, Adv, and Varicella (VZV). These VSTs were generated using donor-derived dendritic cells which were infected with either Ad5f35-pp65 or with varivax vaccine, and were then pooled and used to stimulate donor PBMCs. All ten patients were protected against EBV, Adv, and VZV. Six patients developed CMV reactivation, but only one required antiviral therapy. Of these 10 patients, 7 developed acute or chronic GVHD, though compared to a non-treated group at the same institution, the rate of GVHD did not differ significantly. Thus, it has been possible to target an extended panel of viruses with a single VST product.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Viral Infections Bone Marrow Transplant Infection

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Prophylactic and treatment

Virus Specific T cells (VSTs) for prophylactic and treatment of active viral infection(s) after HSCT.

3 different dose levels starting with 1 x 10E7 /m2 (a T cell number more than an order of magnitude lower than that administered at the time of an unmanipulated marrow infusion), followed by 2 x 10E7/m2 and a final dose 5 x 10E7 VSTs/m2

Group Type EXPERIMENTAL

Virus Specific T cells (VSTs)

Intervention Type BIOLOGICAL

This Phase I dose-escalation trial is designed to evaluate the safety of rapidly generated multivirus-specific T-cell products with antiviral activity against CMV, EBV, adenovirus, HHV6, BK virus, JC virus, and human parainfluenza-3 (HPIV3), derived from eligible HSCT donors.

In this trial, we will utilize a rapid generation protocol for broad spectrum multivirus-specific T cells for infusion to recipients of allogeneic hematopoietic stem cell transplant (HSCT), who are at risk of developing EBV, CMV, adenovirus, HHV6, BKV, JCV and/or HPIV3, or with PCR/culture confirmed active infection(s) of EBV, CMV, adenovirus, HHV6, BKV, JCV, and/or HPIV3 that has failed to resolve with at least 14 days of standard antiviral therapy (if available and tolerated). These cells will be derived from HSCT donors, and the study agent will be assessed at each dose for evidence of dose-limiting toxicities (DLT).

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Virus Specific T cells (VSTs)

This Phase I dose-escalation trial is designed to evaluate the safety of rapidly generated multivirus-specific T-cell products with antiviral activity against CMV, EBV, adenovirus, HHV6, BK virus, JC virus, and human parainfluenza-3 (HPIV3), derived from eligible HSCT donors.

In this trial, we will utilize a rapid generation protocol for broad spectrum multivirus-specific T cells for infusion to recipients of allogeneic hematopoietic stem cell transplant (HSCT), who are at risk of developing EBV, CMV, adenovirus, HHV6, BKV, JCV and/or HPIV3, or with PCR/culture confirmed active infection(s) of EBV, CMV, adenovirus, HHV6, BKV, JCV, and/or HPIV3 that has failed to resolve with at least 14 days of standard antiviral therapy (if available and tolerated). These cells will be derived from HSCT donors, and the study agent will be assessed at each dose for evidence of dose-limiting toxicities (DLT).

Intervention Type BIOLOGICAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Prior myeloablative or non-myeloablative allogeneic hematopoietic stem cell transplant using either bone marrow or peripheral blood stem cells no earlier than 5 days prior to the date of VST infusion. VSTs administered as:

1. Prophylaxis for patients at risk of EBV, CMV, adenovirus, HHV6, BKV, JCV and/or HPIV3.
2. Treatment of reactivation or active infection(s) with EBV, CMV, adenovirus, HHV6, BKV, JCV, and/or HPIV3 that has failed to resolve with at least 14 days of standard antiviral therapy (if available and tolerated). Patients with multiple infections due to the targeted viruses are also eligible.
2. Clinical status at infusion allows for tapering of steroids to less than 0.5 mg/kg/day prednisone or equivalent. 3) Karnofsky/Lansky score of ≥ 50.

4\) Bilirubin ≤ 2x, AST ≤5x, Serum creatinine ≤2x upper limit of normal, Hgb ≥8.0 g/dL (level can be achieved with transfusion).

5\) Pulse oximetry of \> 90% on room air. 6) Available multivirus-specific cytotoxic T lymphocytes 7) Negative pregnancy test (if female of childbearing potential). 8) Patient or parent/guardian capable of providing informed consent.

Exclusion Criteria

1. Patients with other uncontrolled infections.
2. Patients who received ATG, Campath, Basiliximab or other T cell immunosuppressive monoclonal antibodies within 28 days prior to VST infusion.
3. Received donor lymphocyte infusion or other cellular therapies (with the exception of allogeneic cells related to transplantation) within 28 days prior to VST infusion.
4. Evidence of acute GVHD grades II-IV.
5. Active and uncontrolled relapse of malignancy.
6. Patients with Grade ≥ 3 hyperbilirubinemia.
7. Patients who have received investigational (IND) product within 28 days prior VST infusion.
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Children's National Research Institute

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Michael Keller

Assistant Professor, Division of Allergy / Immunology

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Michael D Keller, MD

Role: PRINCIPAL_INVESTIGATOR

Children's National Research Institute

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Childrens National Medical Center

Washington D.C., District of Columbia, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Harris KM, Horn SE, Grant ML, Lang H, Sani G, Jensen-Wachspress MA, Kankate VV, Datar A, Lazarski CA, Bollard CM, Keller MD. T-Cell Therapeutics Targeting Human Parainfluenza Virus 3 Are Broadly Epitope Specific and Are Cross Reactive With Human Parainfluenza Virus 1. Front Immunol. 2020 Oct 5;11:575977. doi: 10.3389/fimmu.2020.575977. eCollection 2020.

Reference Type DERIVED
PMID: 33123159 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

Pro00008637

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Donor-Derived Viral Specific T-cells (VSTs)
NCT02048332 RECRUITING PHASE1/PHASE2