A Randomized Phase IV Control Trial of Single High Dose Oral Vitamin D3 in Pediatric Patients Undergoing HSCT
NCT ID: NCT03176849
Last Updated: 2020-11-17
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE4
49 participants
INTERVENTIONAL
2017-11-01
2019-07-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Single high-dose oral vitamin D therapy, known as stoss therapy, has been used in other chronically ill children where adequate levels of vitamin D are difficult to attain. Stoss therapy suggests a single high-dose followed by maintenance dosing would be adequate to replete and maintain vitamin D levels in chronically ill children. While it has been shown to be effective with no evidence of toxicity in patients with rickets and cystic fibrosis, its safety and efficacy has not been studied in the transplant setting. However, there is an urgent need to identify a modifiable factor may reduce the occurrence and/or severity of HSCT associated complications. The overall objective of this study is to determine the effectiveness of a single, high dose oral vitamin D (Stoss Therapy) followed by maintenance supplementation in children undergoing HSCT. This change will result in a new and innovative approach to maintaining adequate vitamin D levels during pediatric HSCT, with the long term goal of reducing morbidity and mortality.
Our primary goal is to assess the safety and efficacy of a single, high dose of vitamin D followed by maintenance supplementation in children undergoing HSCT. Our secondary goal is to identify the effects of adequate vitamin D levels on early clinical outcomes such as cytokine levels, graft versus host disease, immune recovery, rejection, relapse, infection rates in pediatric HSCT patients.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Single, high dose oral vitamin D3
Patients will take a single oral dose of vitamin D3 based on age and initial vitamin D level. A patient will be classified as sufficient, insufficient, or deficient at the start of therapy. Following this dose, patients will also be given standard vitamin D3 supplementation according to current Endocrine Society Guidelines.
Vitamin D3
The single, oral dose of vitamin D3 is based on patient's age and baseline 25-hydroxy-vitamin D level. Dosing is as follows: (1) For children under 3 years of age. 200000IU for those deficient, 150000IU for those insufficient, and 100000IU for those sufficient; (2) For children 3-12 years of age, 400000IU for those deficient, 350000IU for those insufficient, and 200000IU for those sufficient; (3) For children greater than 12 years of age, 600000IU for those deficient, 500000IU for those insufficient, and 300000IU for those sufficient. This is a single, one time oral dose given prior to the start of transplant.
Standard Vitamin D3 Supplementation
Those who have sufficient vitamin D will be supplemented with 400-600IU/day of Vitamin D3 orally.
Those who have insufficient or are deficient in vitamin D will be supplemented with 50,000IU/week of Vitamin D3 orally.
Standard Vitamin D Supplementation
Patients will be given standard vitamin D3 supplementation during transplant in accordance with standard of care per Endocrine Society Guidelines. This supplementation is based on a patient's initial vitamin D level.
Standard Vitamin D3 Supplementation
Those who have sufficient vitamin D will be supplemented with 400-600IU/day of Vitamin D3 orally.
Those who have insufficient or are deficient in vitamin D will be supplemented with 50,000IU/week of Vitamin D3 orally.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Vitamin D3
The single, oral dose of vitamin D3 is based on patient's age and baseline 25-hydroxy-vitamin D level. Dosing is as follows: (1) For children under 3 years of age. 200000IU for those deficient, 150000IU for those insufficient, and 100000IU for those sufficient; (2) For children 3-12 years of age, 400000IU for those deficient, 350000IU for those insufficient, and 200000IU for those sufficient; (3) For children greater than 12 years of age, 600000IU for those deficient, 500000IU for those insufficient, and 300000IU for those sufficient. This is a single, one time oral dose given prior to the start of transplant.
Standard Vitamin D3 Supplementation
Those who have sufficient vitamin D will be supplemented with 400-600IU/day of Vitamin D3 orally.
Those who have insufficient or are deficient in vitamin D will be supplemented with 50,000IU/week of Vitamin D3 orally.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients must sign an informed consent
Exclusion Criteria
1 Year
25 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Phoenix Children's Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jessie Bodea, MD
Resident Physician
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Alexander Ngwube, MD
Role: PRINCIPAL_INVESTIGATOR
Phoenix Children's Hospital
Kayla Burgett
Role: STUDY_CHAIR
Phoenix Children's Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Phoenix Children's Hospital
Phoenix, Arizona, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Duncan CN, Vrooman L, Apfelbaum EM, Whitley K, Bechard L, Lehmann LE. 25-hydroxy vitamin D deficiency following pediatric hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2011 May;17(5):749-53. doi: 10.1016/j.bbmt.2010.10.009. Epub 2010 Oct 15.
Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med. 2004 Jun;158(6):531-7. doi: 10.1001/archpedi.158.6.531.
Hansson ME, Norlin AC, Omazic B, Wikstrom AC, Bergman P, Winiarski J, Remberger M, Sundin M. Vitamin d levels affect outcome in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014 Oct;20(10):1537-43. doi: 10.1016/j.bbmt.2014.05.030. Epub 2014 Jun 5.
Heaney RP, Armas LA, Shary JR, Bell NH, Binkley N, Hollis BW. 25-Hydroxylation of vitamin D3: relation to circulating vitamin D3 under various input conditions. Am J Clin Nutr. 2008 Jun;87(6):1738-42. doi: 10.1093/ajcn/87.6.1738.
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM; Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011 Jul;96(7):1911-30. doi: 10.1210/jc.2011-0385. Epub 2011 Jun 6.
Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M; Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008 Aug;122(2):398-417. doi: 10.1542/peds.2007-1894.
Rosenblatt J, Bissonnette A, Ahmad R, Wu Z, Vasir B, Stevenson K, Zarwan C, Keefe W, Glotzbecker B, Mills H, Joyce R, Levine JD, Tzachanis D, Boussiotis V, Kufe D, Avigan D. Immunomodulatory effects of vitamin D: implications for GVHD. Bone Marrow Transplant. 2010 Sep;45(9):1463-8. doi: 10.1038/bmt.2009.366. Epub 2010 Jan 18.
Schlereth F, Badenhoop K. [Vitamin D : More than just a bone hormone]. Internist (Berl). 2016 Jul;57(7):646-55. doi: 10.1007/s00108-016-0082-2. German.
Shepherd D, Belessis Y, Katz T, Morton J, Field P, Jaffe A. Single high-dose oral vitamin D3 (stoss) therapy--a solution to vitamin D deficiency in children with cystic fibrosis? J Cyst Fibros. 2013 Mar;12(2):177-82. doi: 10.1016/j.jcf.2012.08.007. Epub 2012 Sep 19.
Sullivan SS, Rosen CJ, Halteman WA, Chen TC, Holick MF. Adolescent girls in Maine are at risk for vitamin D insufficiency. J Am Diet Assoc. 2005 Jun;105(6):971-4. doi: 10.1016/j.jada.2005.03.002.
Wallace G, Jodele S, Myers KC, Dandoy CE, El-Bietar J, Nelson A, Taggart CB, Daniels P, Lane A, Howell J, Teusink-Cross A, Davies SM. Vitamin D Deficiency in Pediatric Hematopoietic Stem Cell Transplantation Patients Despite Both Standard and Aggressive Supplementation. Biol Blood Marrow Transplant. 2016 Jul;22(7):1271-1274. doi: 10.1016/j.bbmt.2016.03.026. Epub 2016 Apr 1.
Wallace G, Jodele S, Howell J, Myers KC, Teusink A, Zhao X, Setchell K, Holtzapfel C, Lane A, Taggart C, Laskin BL, Davies SM. Vitamin D Deficiency and Survival in Children after Hematopoietic Stem Cell Transplant. Biol Blood Marrow Transplant. 2015 Sep;21(9):1627-31. doi: 10.1016/j.bbmt.2015.06.009. Epub 2015 Jun 18.
Olsen B, Bodea J, Garcia A, Beebe K, Campbell C, Schwalbach C, Salzberg D, Miller H, Adams R, Mirea L, Castillo P, Horn B, Bansal S, Mohanakumar T, Ngwube A. Vitamin D Supplementation: Association With Serum Cytokines in Pediatric Hematopoietic Stem Cell Transplantation. Front Pediatr. 2022 Jul 13;10:913586. doi: 10.3389/fped.2022.913586. eCollection 2022.
Bodea J, Beebe K, Campbell C, Salzberg D, Miller H, Adams R, Mirea L, Castillo P, Horn B, Bansal S, Mohanakumar T, Ngwube A. Stoss therapy is safe for treatment of vitamin D deficiency in pediatric patients undergoing HSCT. Bone Marrow Transplant. 2021 Sep;56(9):2137-2143. doi: 10.1038/s41409-021-01294-x. Epub 2021 Apr 19.
Huey SL, Acharya N, Silver A, Sheni R, Yu EA, Pena-Rosas JP, Mehta S. Effects of oral vitamin D supplementation on linear growth and other health outcomes among children under five years of age. Cochrane Database Syst Rev. 2020 Dec 8;12(12):CD012875. doi: 10.1002/14651858.CD012875.pub2.
Related Links
Access external resources that provide additional context or updates about the study.
More information about clinical trials at Phoenix Children's Hospital's Center for Cancer and Blood Disorders
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
17-076
Identifier Type: -
Identifier Source: org_study_id