Seasonal Malaria Vaccination (RTS,S/AS01) and Seasonal Malaria Chemoprevention (SP/AQ)

NCT ID: NCT03143218

Last Updated: 2022-04-07

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE3

Total Enrollment

5920 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-04-17

Study Completion Date

2020-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

A double-blind, individual randomised trial will be undertaken in 6000 children under the age of five years living in areas of Burkina Faso or Mali where the transmission of malaria is intense and highly seasonal to determine whether the malaria vaccine RTS,S/AS01 is (a) as effective as SMC with SP + AQ in preventing clinical malaria (b) provides additional, useful protection when given together with SMC. The primary trial end-point will be the incidence of clinical episodes of malaria detected by passive case detection.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The RTS,S/AS01 malaria vaccine is a recombinant protein vaccine in which the fusion protein RTS (containing parts of the circumsporozoite protein (CSP) of Plasmodium falciparum fused to hepatitis B surface antigen (HBsAg)) is co-expressed in yeast together with free HBsAg (S) to form a virus like particle (RTS,S); it is given with the powerful adjuvant AS01. RTS,S/AS01 induces a strong antibody response to the P. falciparum CSP and high titres of anti-CSP antibody are associated with protection. Following a long process of development, a phase 3 study of RTS,S/AS01 conducted in 15,439 children in 7 countries in Africa showed that three doses of RTS,S/AS01 given with a one month interval between doses, followed by a fourth dose 18 months post dose 3, gave 36.5 % \[95% CI 31,41%\] protection against clinical attacks of malaria when given to young children aged 5-17 months who were followed for 48 months; efficacy was less when given to infants at the age of 6-12 weeks. RTS,S/AS01 provides a high level of protection during the first three months after vaccination, modelled to be about 70% in the phase 3 trial, a level of initial efficacy similar to that observed in an earlier phase 2 trial in Gambian adults. However, efficacy wanes progressively over the following months. A subsequent dose given 18 months after the primary series restores some but not all of the efficacy seen immediately after the primary series. In July 2015, the European Medicines Agency reviewed efficacy and safety data on RTS.S/AS01 and concluded that the risk benefit balance favoured the vaccine and gave a positive opinion on its use in children aged 6 weeks to 17 months. The World Health Organization (WHO) Strategic Advisory Group of Experts (SAGE) committee reviewed the vaccine's efficacy and safety in October 2015 and made a number of recommendations on its further evaluation. These included the pilot implementation of RTS,S/AS01 in children aged 5-17 months in 3-5 settings with moderate-to-high malaria transmission intensity, with a preference for areas where SMC is not being delivered, and evaluation of alternative approaches to deployment of the vaccine. Recent evidence from challenge studies conducted in American adult volunteers suggests that a higher level of protection can be obtained when the third dose of the priming schedule is reduced to one fifth of the usual amount and delayed until approximately 6 months post dose 2, and when a reduced dose is used for boosting. In these studies, a vaccine efficacy of 86% was achieved three weeks following priming and 90% efficacy following boosting with a fractional dose. This encouraging result is now being followed in further studies.

SMC involves monthly administration of an antimalarial drug or drug combination in a full therapeutic course to children on three of four occasions during the period of highest risk of malaria infection. Studies undertaken in several countries in West Africa, including Burkina Faso and Mali, have shown that SMC with sulphadoxine/pyrimethamine (SP) and amodiaquine (AQ) is highly effective in areas where the transmission of malaria is markedly seasonal, reducing the incidence of severe and uncomplicated malaria by up to 80%. SMC with a combination of SP and AQ is safe, with no serious drug related adverse event being reported after administration of over 800,000 courses in Senegal. Recent studies have defined the areas where SMC would be an appropriate intervention based on the seasonality and incidence of malaria. These include most of the Sahel and sub-Sahel, population approximately 200 million, and possibly other areas in southern and eastern Africa. A Technical Expert Group of the WHO reviewed all the available evidence on the efficacy and safety of SMC in May 2011 and recommended SMC with SP+AQ in areas of the Sahel and sub-Sahel with highly seasonal transmission. This recommendation was endorsed by the WHO Malaria Policy Advisory Committee (MPAC) in February 2012. Most countries in the Sahel and sub-Sahel region have incorporated SMC, along with other malaria control interventions in their strategic malaria control plan and the implementation of SMC at scale is in progress in many countries in this region through the UNITAID supported SMC ACCESS programme and the support of other major donor organisations. Preliminary evaluation suggests that SMC is providing about 50% protection against clinical malaria when delivered through a national programme (http://www.malariaconsortium.org/pages/access-smc.htm).

SMC is effective but its delivery is demanding on the recipient and provider, requiring four contacts each malaria transmission season if anti-malarials are given to mothers to administer at home and 12 contacts if directly observed treatment is employed. In addition, SMC is threatened by the emergence of resistance to SP and AQ and there are currently no other combinations of licensed antimalarials that could be used to replace them. It is likely to be 5-10 years before novel antimalarials under development could be deployed for SMC. In contrast to SMC, seasonal vaccination with RTS,S/AS01 would require only one visit each transmission season after priming. RTS,S/AS01 may be a little less effective than SMC during the malaria transmission season but this may be balanced by provision of protection during the dry season, when some malaria transmission still occurs and when SMC would provide no benefit. There is, therefore, a need for a comparative study of these two interventions. In some areas where SMC is currently being deployed, and other malaria control interventions such as long-lasting insecticide treated nets used widely, the incidence of malaria in young children remains high (0.4 episodes per year in children under the age of five years in SMC recipients in Burkina Faso). Thus, determining whether RTS,S/AS01 would provide added, useful protection to SMC in such situations is also important. It might also be able to protect some children who, because of side effects, are unable or unwilling to take SMC.

Although the European Medicines Agency has given a positive opinion on RTS,S/AS01, it is not yet certain how this partially effective malaria vaccine can be used most effectively. Three, large-scale pilot implementation studies are being planned by WHO but it is unlikely that, following WHO recommendations, any of these will be conducted in a country where SMC is being delivered. The WHO recommendations on RTS,S/AS01 indicate the need for research on alternative approaches to the delivery of this vaccine. Exploration of the potential of the vaccine to prevent seasonal malaria, taking advantage of its high but rapidly waning efficacy, meets this recommendation and is, therefore, timely.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Malaria,Falciparum Children, Only

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

A double-blind, individually randomised trial to compare the incidence of clinical episodes of malaria across three study arms:

1. Seasonal vaccination with the malaria vaccine RTS,S/AS01
2. Seasonal malaria chemoprevention with SP/AQ
3. Combination of these two interventions
Primary Study Purpose

PREVENTION

Blinding Strategy

TRIPLE

Participants Caregivers Investigators

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

SMC with SP+AQ

Administration of RABIPUR® in Year 1 and Hepatitis A vaccine in Year 2 and 3, followed by 4 cycles of SMC with sulphadoxine/pyrimethamine plus amodiaquine in Year 1,2 and 3.

Group Type ACTIVE_COMPARATOR

RABIPUR®

Intervention Type BIOLOGICAL

Year 1 (2017) Three doses of rabies vaccine (April, May, June) Year 2 and 3 (2018/19) One dose of Hepatitis A vaccine (June)

SMC with SP+AQ

Intervention Type DRUG

Year 1, 2 and 3(2017/18/19) Four cycles of SMC (SP+AQ) during the malaria transmission season One cycle of SMC for children above one year of age consisting of sulphadoxine - pyrimethamin (SP) 500mg/25 mg, and amodiaquine (AQ) 150mg on day 1, and AQ 150mg on days 2 and 3. Infants will receive half of these doses.

RTS,S/AS01

Administration of the malaria vaccine RTS,S/AS01 followed by 4 cycles of SMC with placebo in Year 1,2 and 3.

Group Type ACTIVE_COMPARATOR

RTS,S/AS01

Intervention Type BIOLOGICAL

Year 1 (2017) Three doses of RTSS/AS01 (April, May, June) Year 2 and 3 (2018/19) One booster dose of RTSS/AS01 (June)

SMC placebo

Intervention Type DRUG

Year 1, 2 and 3(2017/18/19) Four cycles of SMC placebo during the malaria transmission season

RTS,S/AS01 PLUS SMC with SP+AQ

Administration of the malaria vaccine RTS,S/AS01 followed by 4 cycles of SMC with sulphadoxine/pyrimethamine plus amodiaquine in Year 1,2 and 3.

Group Type ACTIVE_COMPARATOR

RTS,S/AS01

Intervention Type BIOLOGICAL

Year 1 (2017) Three doses of RTSS/AS01 (April, May, June) Year 2 and 3 (2018/19) One booster dose of RTSS/AS01 (June)

SMC with SP+AQ

Intervention Type DRUG

Year 1, 2 and 3(2017/18/19) Four cycles of SMC (SP+AQ) during the malaria transmission season One cycle of SMC for children above one year of age consisting of sulphadoxine - pyrimethamin (SP) 500mg/25 mg, and amodiaquine (AQ) 150mg on day 1, and AQ 150mg on days 2 and 3. Infants will receive half of these doses.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

RABIPUR®

Year 1 (2017) Three doses of rabies vaccine (April, May, June) Year 2 and 3 (2018/19) One dose of Hepatitis A vaccine (June)

Intervention Type BIOLOGICAL

RTS,S/AS01

Year 1 (2017) Three doses of RTSS/AS01 (April, May, June) Year 2 and 3 (2018/19) One booster dose of RTSS/AS01 (June)

Intervention Type BIOLOGICAL

SMC with SP+AQ

Year 1, 2 and 3(2017/18/19) Four cycles of SMC (SP+AQ) during the malaria transmission season One cycle of SMC for children above one year of age consisting of sulphadoxine - pyrimethamin (SP) 500mg/25 mg, and amodiaquine (AQ) 150mg on day 1, and AQ 150mg on days 2 and 3. Infants will receive half of these doses.

Intervention Type DRUG

SMC placebo

Year 1, 2 and 3(2017/18/19) Four cycles of SMC placebo during the malaria transmission season

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* The child is a permanent resident of the study area and likely to remain a resident for the duration of the trial
* The child is 5 - 17 months of age at the time of first vaccination
* A parent or legally recognised guardian provides informed consent for the child to join the trial

Exclusion Criteria

* The child is a transient resident in the study area
* The child is in care
* The age of the child is outside the stipulated range
* The child has a history of an adverse reaction to SP or AQ
* The child has a serious underlying illness, including known HIV infection, unless this is well controlled by treatment, or severe malnutrition (weight for age or mid arm circumference Z scores \< 3 SD)
* The child is known to have an immune deficiency disease or is receiving an immunosuppressive drug
* The child has previously received a malaria vaccine.
* The child is enrolled in another malaria intervention trial
* The parents or guardians do not provide informed consent
Minimum Eligible Age

5 Months

Maximum Eligible Age

17 Months

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Malaria Research and Training Center, Bamako, Mali

OTHER

Sponsor Role collaborator

Institut de Recherche en Sciences de la Sante, Burkina Faso

OTHER_GOV

Sponsor Role collaborator

London School of Hygiene and Tropical Medicine

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Brian Greenwood

Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Alassane Dicko, Professor

Role: STUDY_DIRECTOR

Malaria Research & Training Center, Bamako

Jean Bosco Ouedraogo, Professor

Role: STUDY_DIRECTOR

Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest (IRSS-DRO)

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest

Ouagadougou, , Burkina Faso

Site Status

Malaria Research & Training Center

Bamako, , Mali

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Burkina Faso Mali

References

Explore related publications, articles, or registry entries linked to this study.

Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A. From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum Vaccin. 2010 Jan;6(1):90-6. doi: 10.4161/hv.6.1.9677. Epub 2010 Jan 30.

Reference Type BACKGROUND
PMID: 19806009 (View on PubMed)

White MT, Verity R, Griffin JT, Asante KP, Owusu-Agyei S, Greenwood B, Drakeley C, Gesase S, Lusingu J, Ansong D, Adjei S, Agbenyega T, Ogutu B, Otieno L, Otieno W, Agnandji ST, Lell B, Kremsner P, Hoffman I, Martinson F, Kamthunzu P, Tinto H, Valea I, Sorgho H, Oneko M, Otieno K, Hamel MJ, Salim N, Mtoro A, Abdulla S, Aide P, Sacarlal J, Aponte JJ, Njuguna P, Marsh K, Bejon P, Riley EM, Ghani AC. Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect Dis. 2015 Dec;15(12):1450-8. doi: 10.1016/S1473-3099(15)00239-X. Epub 2015 Sep 2.

Reference Type BACKGROUND
PMID: 26342424 (View on PubMed)

RTS,S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015 Jul 4;386(9988):31-45. doi: 10.1016/S0140-6736(15)60721-8. Epub 2015 Apr 23.

Reference Type BACKGROUND
PMID: 25913272 (View on PubMed)

Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, Ballou WR, Conway DJ, Reece WH, Gothard P, Yamuah L, Delchambre M, Voss G, Greenwood BM, Hill A, McAdam KP, Tornieporth N, Cohen JD, Doherty T; RTS, S Malaria Vaccine Trial Team. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet. 2001 Dec 8;358(9297):1927-34. doi: 10.1016/S0140-6736(01)06957-4.

Reference Type BACKGROUND
PMID: 11747915 (View on PubMed)

Regules JA, Cicatelli SB, Bennett JW, Paolino KM, Twomey PS, Moon JE, Kathcart AK, Hauns KD, Komisar JL, Qabar AN, Davidson SA, Dutta S, Griffith ME, Magee CD, Wojnarski M, Livezey JR, Kress AT, Waterman PE, Jongert E, Wille-Reece U, Volkmuth W, Emerling D, Robinson WH, Lievens M, Morelle D, Lee CK, Yassin-Rajkumar B, Weltzin R, Cohen J, Paris RM, Waters NC, Birkett AJ, Kaslow DC, Ballou WR, Ockenhouse CF, Vekemans J. Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study. J Infect Dis. 2016 Sep 1;214(5):762-71. doi: 10.1093/infdis/jiw237. Epub 2016 Jun 13.

Reference Type BACKGROUND
PMID: 27296848 (View on PubMed)

Wilson AL; IPTc Taskforce. A systematic review and meta-analysis of the efficacy and safety of intermittent preventive treatment of malaria in children (IPTc). PLoS One. 2011 Feb 14;6(2):e16976. doi: 10.1371/journal.pone.0016976.

Reference Type BACKGROUND
PMID: 21340029 (View on PubMed)

Dicko A, Diallo AI, Tembine I, Dicko Y, Dara N, Sidibe Y, Santara G, Diawara H, Conare T, Djimde A, Chandramohan D, Cousens S, Milligan PJ, Diallo DA, Doumbo OK, Greenwood B. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Mali: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011 Feb 1;8(2):e1000407. doi: 10.1371/journal.pmed.1000407.

Reference Type BACKGROUND
PMID: 21304923 (View on PubMed)

Konate AT, Yaro JB, Ouedraogo AZ, Diarra A, Gansane A, Soulama I, Kangoye DT, Kabore Y, Ouedraogo E, Ouedraogo A, Tiono AB, Ouedraogo IN, Chandramohan D, Cousens S, Milligan PJ, Sirima SB, Greenwood B, Diallo DA. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Burkina Faso: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011 Feb 1;8(2):e1000408. doi: 10.1371/journal.pmed.1000408.

Reference Type BACKGROUND
PMID: 21304925 (View on PubMed)

NDiaye JL, Cisse B, Ba EH, Gomis JF, Ndour CT, Molez JF, Fall FB, Sokhna C, Faye B, Kouevijdin E, Niane FK, Cairns M, Trape JF, Rogier C, Gaye O, Greenwood BM, Milligan PJ. Safety of Seasonal Malaria Chemoprevention (SMC) with Sulfadoxine-Pyrimethamine plus Amodiaquine when Delivered to Children under 10 Years of Age by District Health Services in Senegal: Results from a Stepped-Wedge Cluster Randomized Trial. PLoS One. 2016 Oct 20;11(10):e0162563. doi: 10.1371/journal.pone.0162563. eCollection 2016.

Reference Type BACKGROUND
PMID: 27764102 (View on PubMed)

Cairns M, Roca-Feltrer A, Garske T, Wilson AL, Diallo D, Milligan PJ, Ghani AC, Greenwood BM. Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Nat Commun. 2012 Jun 6;3:881. doi: 10.1038/ncomms1879.

Reference Type BACKGROUND
PMID: 22673908 (View on PubMed)

Penny MA, Verity R, Bever CA, Sauboin C, Galactionova K, Flasche S, White MT, Wenger EA, Van de Velde N, Pemberton-Ross P, Griffin JT, Smith TA, Eckhoff PA, Muhib F, Jit M, Ghani AC. Public health impact and cost-effectiveness of the RTS,S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2016 Jan 23;387(10016):367-375. doi: 10.1016/S0140-6736(15)00725-4. Epub 2015 Nov 6.

Reference Type BACKGROUND
PMID: 26549466 (View on PubMed)

Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, Lievens M, Abdulla S, Adjei S, Agbenyega T, Agnandji ST, Aide P, Anderson S, Ansong D, Aponte JJ, Asante KP, Bejon P, Birkett AJ, Bruls M, Connolly KM, D'Alessandro U, Dobano C, Gesase S, Greenwood B, Grimsby J, Tinto H, Hamel MJ, Hoffman I, Kamthunzi P, Kariuki S, Kremsner PG, Leach A, Lell B, Lennon NJ, Lusingu J, Marsh K, Martinson F, Molel JT, Moss EL, Njuguna P, Ockenhouse CF, Ogutu BR, Otieno W, Otieno L, Otieno K, Owusu-Agyei S, Park DJ, Pelle K, Robbins D, Russ C, Ryan EM, Sacarlal J, Sogoloff B, Sorgho H, Tanner M, Theander T, Valea I, Volkman SK, Yu Q, Lapierre D, Birren BW, Gilbert PB, Wirth DF. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N Engl J Med. 2015 Nov 19;373(21):2025-2037. doi: 10.1056/NEJMoa1505819. Epub 2015 Oct 21.

Reference Type BACKGROUND
PMID: 26488565 (View on PubMed)

Swysen C, Vekemans J, Bruls M, Oyakhirome S, Drakeley C, Kremsner P, Greenwood B, Ofori-Anyinam O, Okech B, Villafana T, Carter T, Savarese B, Duse A, Reijman A, Ingram C, Frean J, Ogutu B; Clinical Trials Partnership Committee. Development of standardized laboratory methods and quality processes for a phase III study of the RTS, S/AS01 candidate malaria vaccine. Malar J. 2011 Aug 4;10:223. doi: 10.1186/1475-2875-10-223.

Reference Type BACKGROUND
PMID: 21816032 (View on PubMed)

Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995 Jun;52(6):565-8. doi: 10.4269/ajtmh.1995.52.565.

Reference Type BACKGROUND
PMID: 7611566 (View on PubMed)

Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Coulibaly D, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med. 2001 Jan 25;344(4):257-63. doi: 10.1056/NEJM200101253440403.

Reference Type BACKGROUND
PMID: 11172152 (View on PubMed)

Djimde AA, Fofana B, Sagara I, Sidibe B, Toure S, Dembele D, Dama S, Ouologuem D, Dicko A, Doumbo OK. Efficacy, safety, and selection of molecular markers of drug resistance by two ACTs in Mali. Am J Trop Med Hyg. 2008 Mar;78(3):455-61.

Reference Type BACKGROUND
PMID: 18337343 (View on PubMed)

Cairns M, Cheung YB, Xu Y, Asante KP, Owusu-Agyei S, Diallo D, Konate AT, Dicko A, Chandramohan D, Greenwood B, Milligan P. Analysis of Preventive Interventions for Malaria: Exploring Partial and Complete Protection and Total and Primary Intervention Effects. Am J Epidemiol. 2015 Jun 15;181(12):1008-17. doi: 10.1093/aje/kwv010. Epub 2015 May 27.

Reference Type BACKGROUND
PMID: 26022663 (View on PubMed)

Xu Y, Cheung YB, Lam KF, Milligan P. Estimation of summary protective efficacy using a frailty mixture model for recurrent event time data. Stat Med. 2012 Dec 20;31(29):4023-39. doi: 10.1002/sim.5458. Epub 2012 Jul 5.

Reference Type BACKGROUND
PMID: 22764039 (View on PubMed)

Chandramohan D, Zongo I, Sagara I, Cairns M, Yerbanga RS, Diarra M, Nikiema F, Tapily A, Sompougdou F, Issiaka D, Zoungrana C, Sanogo K, Haro A, Kaya M, Sienou AA, Traore S, Mahamar A, Thera I, Diarra K, Dolo A, Kuepfer I, Snell P, Milligan P, Ockenhouse C, Ofori-Anyinam O, Tinto H, Djimde A, Ouedraogo JB, Dicko A, Greenwood B. Seasonal Malaria Vaccination with or without Seasonal Malaria Chemoprevention. N Engl J Med. 2021 Sep 9;385(11):1005-1017. doi: 10.1056/NEJMoa2026330. Epub 2021 Aug 25.

Reference Type RESULT
PMID: 34432975 (View on PubMed)

Ali MS, Stockdale L, Sagara I, Zongo I, Yerbanga RS, Mahamar A, Nikiema F, Tapily A, Sompougdou F, Diarra M, Bellamy D, Provstgaard-Morys S, Zoungrana C, Issiaka D, Haro A, Sanogo K, Sienou AA, Kaya M, Traore S, Dicko OM, Kone Y, Yalcouye H, Thera I, Diarra K, Snell P, Ofori-Anyinam O, Ockenhouse C, Lee C, Ewer K, Tinto H, Djimde A, Ouedraogo JB, Dicko A, Chandramohan D, Greenwood B. The anti-circumsporozoite antibody response to repeated, seasonal booster doses of the malaria vaccine RTS,S/AS01E. NPJ Vaccines. 2025 Feb 6;10(1):26. doi: 10.1038/s41541-025-01078-0.

Reference Type DERIVED
PMID: 39915506 (View on PubMed)

Cairns M, Barry A, Zongo I, Sagara I, Yerbanga SR, Diarra M, Zoungrana C, Issiaka D, Sienou AA, Tapily A, Sanogo K, Kaya M, Traore S, Diarra K, Yalcouye H, Sidibe Y, Haro A, Thera I, Snell P, Grant J, Tinto H, Milligan P, Chandramohan D, Greenwood B, Dicko A, Ouedraogo JB. The duration of protection against clinical malaria provided by the combination of seasonal RTS,S/AS01E vaccination and seasonal malaria chemoprevention versus either intervention given alone. BMC Med. 2022 Oct 7;20(1):352. doi: 10.1186/s12916-022-02536-5.

Reference Type DERIVED
PMID: 36203149 (View on PubMed)

Grant J, Sagara I, Zongo I, Cairns M, Yerbanga RS, Diarra M, Zoungrana C, Issiaka D, Nikiema F, Sompougdou F, Tapily A, Kaya M, Haro A, Sanogo K, Sienou AA, Traore S, Thera I, Yalcouye H, Kuepfer I, Snell P, Milligan P, Ockenhouse C, Ofori-Anyinam O, Tinto H, Djimde A, Chandramohan D, Greenwood B, Dicko A, Ouedraogo JB. Impact of seasonal RTS,S/AS01E vaccination plus seasonal malaria chemoprevention on the nutritional status of children in Burkina Faso and Mali. Malar J. 2022 Feb 22;21(1):59. doi: 10.1186/s12936-022-04077-x.

Reference Type DERIVED
PMID: 35193608 (View on PubMed)

Sagara I, Zongo I, Cairns M, Yerbanga RS, Mahamar A, Nikiema F, Tapily A, Sompougdou F, Diarra M, Zoungrana C, Issiaka D, Haro A, Sanogo K, Aziz Sienou A, Kaya M, Traore S, Thera I, Diarra K, Dolo A, Kuepfer I, Snell P, Milligan P, Ockenhouse C, Ofori-Anyinam O, Tinto H, Djimde A, Ouedraogo JB, Dicko A, Chandramohan D, Greenwood B. The Anti-Circumsporozoite Antibody Response of Children to Seasonal Vaccination With the RTS,S/AS01E Malaria Vaccine. Clin Infect Dis. 2022 Sep 10;75(4):613-622. doi: 10.1093/cid/ciab1017.

Reference Type DERIVED
PMID: 34894221 (View on PubMed)

Chandramohan D, Dicko A, Zongo I, Sagara I, Cairns M, Kuepfer I, Diarra M, Tapily A, Issiaka D, Sanogo K, Mahamar A, Sompougdou F, Yerbanga S, Thera I, Milligan P, Tinto H, Ofori-Anyinam O, Ouedraogo JB, Greenwood B. Seasonal malaria vaccination: protocol of a phase 3 trial of seasonal vaccination with the RTS,S/AS01E vaccine, seasonal malaria chemoprevention and the combination of vaccination and chemoprevention. BMJ Open. 2020 Sep 15;10(9):e035433. doi: 10.1136/bmjopen-2019-035433.

Reference Type DERIVED
PMID: 32933955 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

ITDCZJ29 - Greenwood

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.