Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
TERMINATED
PHASE4
467 participants
INTERVENTIONAL
2017-09-04
2019-08-10
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Training Inmate Peer Educators in Detecting Tuberculosis in a Developing Country Prison: A Cluster Randomized Trial
NCT02744521
Treatment of Latent TB Infection for Jailed Persons
NCT00128206
Study of Pre-clearance of Latent Tuberculosis Infection And BCG Revaccination
NCT01119521
A Study of the Safety, Tolerability, and Absorption, Metabolism, and Excretion of PA-824 in Healthy Adult Male Subjects.
NCT03202693
Point-of-care Pharmacogenomic Testing to Optimize Isoniazid Dosing for Tuberculosis Prevention
NCT05413551
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
It is Infectious disease, with airborne transmission, TB can present both the active or latent form. Despite the biological aspect of transmission, unhealthy environmental conditions (room without direct sunlight, poor ventilation and overcrowded) and individual factors (malnutrition, immunosuppression, use of alcohol and other drugs) have significant influence on transferability and infectivity.
With the discovery of drugs active against Mycobacterium tuberculosis, it was observed a reduction of disease incidence in the world. Despite this declining incidence, World Health Organization (WHO) classifies TB as a public health problem due to the emergence of multidrug strains or extensively resistant to treatment, added to the cases of latent TB reactivation, observed with the advent of HIV/AIDS.
Studies show a direct relationship between the incidence of TB and the prison environment. Nevertheless, the presence of prisons in one location increases the incidence of this disease, indicating that there is an exchange of disease between the prison and the community.
Currently, control of TB in the prison system is based on the tracking of individuals with active TB and / or latent and, in their respective treatment. For the identification of individuals with active disease, it is necessary the recognition of respiratory symptoms (cough mainly) and sputum smear microscopy and sputum culture, and chest X-ray. As the search of individuals with latent form, must be carried to the skin test with Purified Protein Derived (PPD).
Most of the units of the Brazilian's prison system these diagnostic methods are not available and hence the transport of individuals for their realization is necessary, generating an additional cost, in most cases, unfeasible process execution.
With the completion of this study, it seek to determine the effectiveness of primary prophylaxis in the prison population in order to gather new scientific evidence, to bring affordable methods for the control of TB in prisons.
Despite advances in diagnosis and treatment TB, this is the third leading cause of death from infectious diseases worldwide (Naghavi et al, 2015). In 2015, the WHO estimated incidence of 9.6 million new cases of TB in the world, with about 1.1 million deaths. For Brazil it was estimated incidence of 44 cases per 100,000 (WHO, 2015). The incidence of TB has declined about 2% per year, but this rate is not homogeneous in the global context.
Brazil occupies the 22nd place in the ranking of the WHO with an estimated annual rate of 83,310 cases of the disease (Zumla et al, 2015). In the past seven years, it is estimated that the incidence declined only 0.7% (per year). A key factor in this slow progress in TB control in Brazil, and other emerging countries is the existence of high-risk subpopulations, including slums and prisons, which act as reservoirs and amplifiers for the transmission of the disease (Basu; Stückler; Mckee 2011; Dowdy et al, 2012). A recent systematic review showed that the average incidence of TB in the prison population can be up to 23 times that recorded in the general population (Baussano et al, 2010).
With the fourth largest prison populations in the world, is observed in Brazil, the increased incidence of TB among prisoners in the last seven years. Although prisoners represent only 0.3% of the population, the increase in the prison population over this period resulted in almost doubling the proportion of all TB cases that occur among prisoners (4.1% in 2007, 8, 1% in 2013).
The arrests are in an ideal environment for the spread of TB, since they show individuals users of tobacco and alcohol in high doses, in addition to drug abuse in overcrowded cells with poor ventilation and with limited access to care health and diagnosis of TB. Currently, the Ministry of Health recommends active search for TB at the entrance to the prison and once a year by chest X-ray. Due to the cost and logistics, most prisons do not adhere to this recommendation. There is also a clear recommendation not to use the tuberculin skin test or perform the treatment for latent tuberculosis. If the procedures for active case detection and / or prophylactic treatment would impact the high transmission in prisons is a question that still remains open (Al-Darraji; Kamarulzamn; Altice, 2012).
The concentration of cases of TB in prisons can represent both an obstacle and an opportunity to control the disease, depending on the effectiveness of interventions in these environments.
Preliminary studies show high annual rate of TB infection (26%) among the prison population of 12 penitentiaries of Mato Grosso do Sul. Besides the large burden of disease in this population is significant dispersion of the TB prison to the community (Sacchi et al, 2015). Cross-sectional studies show high yield annual screening for TB, however, the effectiveness of this measure combined with other interventions remains unclear (Ferreira et al, 1996; Fournet et al, 2006; Lemos et al, 2014; Vieira et al, 2010; Sanches et al, 2013; Walnut; Abrahão; Galesi, 2012; Kuhleis et al, 2012; Estevan; Oliveira; Croda, 2013). Due to the combination of high force of infection in prisons and short prison term, primary prophylaxis may be an effective intervention. This new approach has never been evaluated in the context of prisons in low and middle income countries; to assess the impact of program strategies for TB screening and prophylaxis, longitudinal data will be essential. Given the infrastructure that was created for long-term prospective studies in Brazil, there is an excellent opportunity to close the critical knowledge gaps that have been barriers to effective implementation of TB control in high transmission prisons.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Treatment
Each subject received two oral supervised weekly doses of isoniazid 900 milligrams.
Isoniazid 900 milligrams
Oral tablet, with the isoniazid 900mg, given two weekly. The administration will be supervised.
Control
Each subject received two oral supervised weekly doses of placebo (oral tablet, without the active ingredient, similar in size, weight, color, taste and odor).
Placebo
Oral tablet, without the active ingredient, similar in size, weight, color, taste and odor.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Isoniazid 900 milligrams
Oral tablet, with the isoniazid 900mg, given two weekly. The administration will be supervised.
Placebo
Oral tablet, without the active ingredient, similar in size, weight, color, taste and odor.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Sign the informed consent form.
Exclusion Criteria
* Active TB or previous use of isoniazid;
* Score Alcohol Use Disorders Identification Test ≥15.
* Reactive serology for HIV, hepatitis B and C;
* Reactive result for quantiferon, considering as positive the result of Tube 1 and / or Tube22 above 0.2 IU / mL;
* Liver enzymes (Aspartate aminotransferase and Alanate aminotransferase) three times the upper limit;
* History or treatment for epilepsy;
18 Years
45 Years
MALE
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Oswaldo Cruz Foundation
OTHER
Federal University of Mato Grosso
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Roberto D Oliveira
PhD Student
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Flora MF Moreira, Graduate
Role: STUDY_CHAIR
MsC Student
Andrea SS Carbone, MsC
Role: STUDY_CHAIR
PhD student
Flavia PC Sacchi, MsC
Role: STUDY_CHAIR
PhD student
Paulo CP Santos, Graduate
Role: STUDY_CHAIR
MsC Student
Rafaele CP Araújo, MsC
Role: STUDY_CHAIR
PhD student
Alessandra C Leite, MsC
Role: STUDY_CHAIR
PhD student
Cassia B Reis, PhD
Role: STUDY_CHAIR
Pos doc Student
Valeria C Rolla, PhD
Role: STUDY_CHAIR
Professor
Jason R Andrews, PhD
Role: STUDY_CHAIR
Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Roberto Oliveira
Dourados, Mato Grosso do Sul, Brazil
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227-30. doi: 10.1126/science.8284673.
Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009 Dec;7(12):845-55. doi: 10.1038/nrmicro2236. Epub 2009 Oct 26.
Basu S, Stuckler D, McKee M. Addressing institutional amplifiers in the dynamics and control of tuberculosis epidemics. Am J Trop Med Hyg. 2011 Jan;84(1):30-7. doi: 10.4269/ajtmh.2011.10-0472.
Baussano I, Williams BG, Nunn P, Beggiato M, Fedeli U, Scano F. Tuberculosis incidence in prisons: a systematic review. PLoS Med. 2010 Dec 21;7(12):e1000381. doi: 10.1371/journal.pmed.1000381.
BERNSTEIN J, LOTT WA, STEINBERG BA, YALE HL. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am Rev Tuberc. 1952 Apr;65(4):357-64. doi: 10.1164/art.1952.65.4.357. No abstract available.
Brites D, Gagneux S. Old and new selective pressures on Mycobacterium tuberculosis. Infect Genet Evol. 2012 Jun;12(4):678-85. doi: 10.1016/j.meegid.2011.08.010. Epub 2011 Aug 17.
Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3684-9. doi: 10.1073/pnas.052548299. Epub 2002 Mar 12.
Carbone Ada S, Paiao DS, Sgarbi RV, Lemos EF, Cazanti RF, Ota MM, Junior AL, Bampi JV, Elias VP, Simionatto S, Motta-Castro AR, Pompilio MA, de Oliveira SM, Ko AI, Andrews JR, Croda J. Active and latent tuberculosis in Brazilian correctional facilities: a cross-sectional study. BMC Infect Dis. 2015 Jan 22;15:24. doi: 10.1186/s12879-015-0764-8.
Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013 Oct;45(10):1176-82. doi: 10.1038/ng.2744. Epub 2013 Sep 1.
Dowdy DW, Golub JE, Chaisson RE, Saraceni V. Heterogeneity in tuberculosis transmission and the role of geographic hotspots in propagating epidemics. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9557-62. doi: 10.1073/pnas.1203517109. Epub 2012 May 29.
Estevan AO, Oliveira SM, Croda J. Active and latent tuberculosis in prisoners in the Central-West Region of Brazil. Rev Soc Bras Med Trop. 2013 Jul-Aug;46(4):515-8. doi: 10.1590/0037-8682-1441-2013.
Ferreira MM, Ferrazoli L, Palaci M, Salles PS, Medeiros LA, Novoa P, Kiefer CR, Schechtmann M, Kritski AL, Johnson WD, Riley LW, Ferreira Junior OC. Tuberculosis and HIV infection among female inmates in Sao Paulo, Brazil: a prospective cohort study. J Acquir Immune Defic Syndr Hum Retrovirol. 1996 Oct 1;13(2):177-83. doi: 10.1097/00042560-199610010-00009.
Fournet N, Sanchez A, Massari V, Penna L, Natal S, Biondi E, Larouze B. Development and evaluation of tuberculosis screening scores in Brazilian prisons. Public Health. 2006 Oct;120(10):976-83. doi: 10.1016/j.puhe.2006.06.004. Epub 2006 Sep 11.
FOX HH. The chemical approach to the control of tuberculosis. Science. 1952 Aug 8;116(3006):129-34. doi: 10.1126/science.116.3006.129. No abstract available.
Hanson ML, Comstock GW, Haley CE. Community isoniazid prophylaxis program in an underdeveloped area of Alaska. Public Health Rep (1896). 1967 Dec;82(12):1045-56. No abstract available.
Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, Bar-Gal GK, Spigelman M. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One. 2008;3(10):e3426. doi: 10.1371/journal.pone.0003426. Epub 2008 Oct 15.
Kuhleis D, Ribeiro AW, Costa ER, Cafrune PI, Schmid KB, Costa LL, Ribeiro MO, Zaha A, Rossetti ML. Tuberculosis in a southern Brazilian prison. Mem Inst Oswaldo Cruz. 2012 Nov;107(7):909-15. doi: 10.1590/s0074-02762012000700012.
Lemos EF, Alves AM, Oliveira Gde C, Rodrigues MP, Martins ND, Croda J. Health-service performance of TB treatment for indigenous and non-indigenous populations in Brazil: a cross-sectional study. BMC Health Serv Res. 2014 May 23;14:237. doi: 10.1186/1472-6963-14-237.
MacIntyre CR, Kendig N, Kummer L, Birago S, Graham NM. Impact of tuberculosis control measures and crowding on the incidence of tuberculous infection in Maryland prisons. Clin Infect Dis. 1997 Jun;24(6):1060-7. doi: 10.1086/513632.
Martinson NA, Barnes GL, Moulton LH, Msandiwa R, Hausler H, Ram M, McIntyre JA, Gray GE, Chaisson RE. New regimens to prevent tuberculosis in adults with HIV infection. N Engl J Med. 2011 Jul 7;365(1):11-20. doi: 10.1056/NEJMoa1005136.
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71. doi: 10.1016/S0140-6736(14)61682-2. Epub 2014 Dec 18.
Nerlich AG, Haas CJ, Zink A, Szeimies U, Hagedorn HG. Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet. 1997 Nov 8;350(9088):1404. doi: 10.1016/S0140-6736(05)65185-9. No abstract available.
Nguyen L, Pieters J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol. 2009;49:427-53. doi: 10.1146/annurev-pharmtox-061008-103123.
Nogueira PA, Abrahao RM, Galesi VM. Tuberculosis and latent tuberculosis in prison inmates. Rev Saude Publica. 2012 Feb;46(1):119-27. doi: 10.1590/s0034-89102011005000080. Epub 2011 Dec 13.
Sacchi FP, Praca RM, Tatara MB, Simonsen V, Ferrazoli L, Croda MG, Suffys PN, Ko AI, Andrews JR, Croda J. Prisons as reservoir for community transmission of tuberculosis, Brazil. Emerg Infect Dis. 2015 Mar;21(3):452-5. doi: 10.3201/eid2103.140896.
Salpeter SR. Fatal isoniazid-induced hepatitis. Its risk during chemoprophylaxis. West J Med. 1993 Nov;159(5):560-4.
Sanchez A, Massari V, Gerhardt G, Espinola AB, Siriwardana M, Camacho LA, Larouze B. X ray screening at entry and systematic screening for the control of tuberculosis in a highly endemic prison. BMC Public Health. 2013 Oct 20;13:983. doi: 10.1186/1471-2458-13-983.
Sharma SK, Sharma A, Kadhiravan T, Tharyan P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev. 2013 Jul 5;2013(7):CD007545. doi: 10.1002/14651858.CD007545.pub2.
Smieja MJ, Marchetti CA, Cook DJ, Smaill FM. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst Rev. 2000;1999(2):CD001363. doi: 10.1002/14651858.CD001363.
Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9869-74. doi: 10.1073/pnas.94.18.9869.
Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, Urbanczik R, Perkins MD, Aziz MA, Pai M. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006 Oct;6(10):664-74. doi: 10.1016/S1473-3099(06)70602-8.
Sterling TR, Villarino ME, Borisov AS, Shang N, Gordin F, Bliven-Sizemore E, Hackman J, Hamilton CD, Menzies D, Kerrigan A, Weis SE, Weiner M, Wing D, Conde MB, Bozeman L, Horsburgh CR Jr, Chaisson RE; TB Trials Consortium PREVENT TB Study Team. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011 Dec 8;365(23):2155-66. doi: 10.1056/NEJMoa1104875.
Temple ME, Nahata MC. Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother. 1999 Nov;33(11):1203-10. doi: 10.1345/aph.18450.
THOREN M, HINSHAW HC. Therapy of pulmonary tuberculosis with isoniazid alone and in combination with streptomycin and with para-amino-salicylic acid. Stanford Med Bull. 1952 Nov;10(4):316-8. No abstract available.
Urrego J, Ko AI, da Silva Santos Carbone A, Paiao DS, Sgarbi RV, Yeckel CW, Andrews JR, Croda J. The Impact of Ventilation and Early Diagnosis on Tuberculosis Transmission in Brazilian Prisons. Am J Trop Med Hyg. 2015 Oct;93(4):739-46. doi: 10.4269/ajtmh.15-0166. Epub 2015 Jul 20.
Vieira AA, Ribeiro SA, de Siqueira AM, Galesi VM, dos Santos LA, Golub JE. Prevalence of patients with respiratory symptoms through active case finding and diagnosis of pulmonary tuberculosis among prisoners and related predictors in a jail in the city of Carapicuiba, Brazil. Rev Bras Epidemiol. 2010 Dec;13(4):641-50. doi: 10.1590/s1415-790x2010000400009.
Zumla A, George A, Sharma V, Herbert RH; Baroness Masham of Ilton; Oxley A, Oliver M. The WHO 2014 global tuberculosis report--further to go. Lancet Glob Health. 2015 Jan;3(1):e10-2. doi: 10.1016/S2214-109X(14)70361-4. No abstract available.
Al-Darraji HA, Kamarulzaman A, Altice FL. Isoniazid preventive therapy in correctional facilities: a systematic review. Int J Tuberc Lung Dis. 2012 Jul;16(7):871-9. doi: 10.5588/ijtld.11.0447. Epub 2012 Mar 7.
Barrera, L. The basics of clinical bacteriology Tuberculosis (2007): 93-112.
Daniel TM. The history of tuberculosis. Respir Med. 2006 Nov;100(11):1862-70. doi: 10.1016/j.rmed.2006.08.006. Epub 2006 Sep 1.
Porter JD, McAdam KP. The re-emergence of tuberculosis. Annu Rev Public Health. 1994;15:303-23. doi: 10.1146/annurev.pu.15.050194.001511.
Nunn P, Williams B, Floyd K, Dye C, Elzinga G, Raviglione M. Tuberculosis control in the era of HIV. Nat Rev Immunol. 2005 Oct;5(10):819-26. doi: 10.1038/nri1704.
Schluger NW, Rom WN. The host immune response to tuberculosis. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):679-91. doi: 10.1164/ajrccm.157.3.9708002. No abstract available.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Related Links
Access external resources that provide additional context or updates about the study.
World Prison Brief: Brazil.
Power calculator for binary outcome superiority trial.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
U1111-1189-0829
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.