Studying the Airway Microenvironment in Patients Undergoing Surgical and Bronchoscopic Interventions for COPD
NCT ID: NCT03010592
Last Updated: 2021-09-16
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
80 participants
OBSERVATIONAL
2017-02-06
2023-01-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Lung Volume Reduction Coil Microbiome Study
NCT03010566
Realize the Current Situation of COPD Patients in China
NCT03131362
An Observational Registry of Chinese COPD Study
NCT04318912
The Use of Wearable Technology to Acquire Signals for COPD Research
NCT04495062
The Cohort Study for Chronic Obstructive Pulmonary Disease (COPD) in China
NCT03044847
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Patients with severe emphysema and hyperinflation benefit from lung volume reduction techniques designed to reduce gas trapping and to improve airflow, chest wall and lung mechanics. The best evidence exists for lung volume reduction surgery (LVRS), which however is not without risk and there is increasing interest in the development of bronchoscopic lung volume reduction (BLVR) techniques including emplacement of endobronchial valves and coils and targeted lung denervation (TLD), which have all been shown to improve lung function, exercise capacity, and quality of life.
Endobronchial cryotherapy is a novel investigational treatment in patients with chronic bronchitis. Porcine models have shown ablation of abnormal metaplastic goblet cells and regeneration of healthy ciliated epithelium and submucosa within 48 hours with complete healing by 60 days following treatment. A pilot study evaluated 11 patients undergoing a lobectomy or pneumonectomy for presumed lung cancer. Metered sprays, one to each of two separate locations, were administered 2 weeks prior to surgery, at least 2cm distal to the proposed resection margin (first segmental and lobular bronchi). No adverse events were reported. Histology of the 8 submitted specimens demonstrated localised cryothermic effect extending to but not beyond the submucosa, and minimal inflammation.
Chronic airway infiltration by neutrophils, macrophages, and Th-1 predominant lymphocytes driven by increased expression of inflammatory proteins, cytokines and chemokines, is intensified during exacerbations. It is generally accepted that acute exacerbations accelerate the decline in lung function in COPD. Recent studies have suggested a role for microvesicles (MVs) in the pathogenesis of COPD, driving exacerbations. MVs are fragments of cell membrane ranging from 0.1 to 1µm in diameter shed by almost all eukaryotic cells. They are recognised to be key mediators of intercellular communication, transporting a variety of molecular cargo including proteins and nucleic acids to distant cells, and have been implicated in various inflammatory diseases including COPD. The majority of studies have looked at circulating endothelial-derived MVs, which are elevated in patients with COPD, are significantly higher during an exacerbation, and are predictive of rapid forced expiratory volume in 1 second (FEV1) decline. However, there is a paucity of data on epithelial-derived MVs within the lung. We know from acute lung injury models that alveolar macrophage-derived microvesicles, which carry biologically active tumour necrosis factor, are rapidly released during the early phase and may play a role in initiating the disease process.
Bronchoalveolar lavage and brushings are established techniques to obtain material for respectively, measurement of inflammatory proteins and microvesicles, and for cytology and messenger ribonucleic acid (mRNA) analysis. A novel technique sampling the mucosal lining fluid using a synthetic absorptive matrix ('bronchosorption') has been shown to have greater sensitivity to standard bronchoalveolar lavage (BAL), eliminating the disadvantage of dilution.
A combination of all three techniques to directly harvest lower airway samples at multiples sites of pulmonary inflammation would allow comparison of proteomic, transcriptomic, and histology data from the endobronchial environment before and after intervention. This would be the first study evaluating the lung microenvironment in this context, which may identify predictive biomarkers of response to intervention and future exacerbation risk.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
OTHER
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Patients with known Category 3 Organisms as per the Advisory Committee on Dangerous Pathogens (ACDP) for example, Tuberculosis or Human Immunodeficiency Virus.
40 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Royal Brompton & Harefield NHS Foundation Trust
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Pallav L Shah, MBBS MD FRCP
Role: PRINCIPAL_INVESTIGATOR
Royal Brompton & Harefields Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Chelsea & Westminster Hospital
London, Chelsea, United Kingdom
Royal Brompton & Harefields Hospital
London, Fulham, United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008 Mar;8(3):183-92. doi: 10.1038/nri2254. Epub 2008 Feb 15.
Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002 Oct;57(10):847-52. doi: 10.1136/thorax.57.10.847.
Takahashi T, Kobayashi S, Fujino N, Suzuki T, Ota C, He M, Yamada M, Suzuki S, Yanai M, Kurosawa S, Yamaya M, Kubo H. Increased circulating endothelial microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility. Thorax. 2012 Dec;67(12):1067-74. doi: 10.1136/thoraxjnl-2011-201395. Epub 2012 Jul 27.
Eltom S, Dale N, Raemdonck KR, Stevenson CS, Snelgrove RJ, Sacitharan PK, Recchi C, Wavre-Shapton S, McAuley DF, O'Kane C, Belvisi MG, Birrell MA. Respiratory infections cause the release of extracellular vesicles: implications in exacerbation of asthma/COPD. PLoS One. 2014 Jun 27;9(6):e101087. doi: 10.1371/journal.pone.0101087. eCollection 2014.
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013 Feb 18;200(4):373-83. doi: 10.1083/jcb.201211138.
Nieri D, Neri T, Petrini S, Vagaggini B, Paggiaro P, Celi A. Cell-derived microparticles and the lung. Eur Respir Rev. 2016 Sep;25(141):266-77. doi: 10.1183/16000617.0009-2016.
Gordon C, Gudi K, Krause A, Sackrowitz R, Harvey BG, Strulovici-Barel Y, Mezey JG, Crystal RG. Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med. 2011 Jul 15;184(2):224-32. doi: 10.1164/rccm.201012-2061OC. Epub 2011 Mar 11.
Thomashow MA, Shimbo D, Parikh MA, Hoffman EA, Vogel-Claussen J, Hueper K, Fu J, Liu CY, Bluemke DA, Ventetuolo CE, Doyle MF, Barr RG. Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease study. Am J Respir Crit Care Med. 2013 Jul 1;188(1):60-8. doi: 10.1164/rccm.201209-1697OC.
Takahashi T, Kobayashi S, Fujino N, Suzuki T, Ota C, Tando Y, Yamada M, Yanai M, Yamaya M, Kurosawa S, Yamauchi M, Kubo H. Annual FEV1 changes and numbers of circulating endothelial microparticles in patients with COPD: a prospective study. BMJ Open. 2014 Mar 6;4(3):e004571. doi: 10.1136/bmjopen-2013-004571.
Soni S, Wilson MR, O'Dea KP, Yoshida M, Katbeh U, Woods SJ, Takata M. Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax. 2016 Nov;71(11):1020-1029. doi: 10.1136/thoraxjnl-2015-208032. Epub 2016 Jun 10.
Leaker BR, Nicholson GC, Ali FY, Daudi N, O'Connor BJ, Barnes PJ. Bronchoabsorption; a novel bronchoscopic technique to improve biomarker sampling of the airway. Respir Res. 2015 Sep 4;16(1):102. doi: 10.1186/s12931-015-0268-5.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
217587
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.