Conivaptan for the Reduction of Cerebral Edema in Intracerebral Hemorrhage- A Safety and Tolerability Study
NCT ID: NCT03000283
Last Updated: 2020-04-17
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
7 participants
INTERVENTIONAL
2017-03-22
2019-04-15
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Hypothesis: The frequent and early use of conivaptan at 40mg/day will be safe and well-tolerated, and also reduce cerebral edema, in patients with intracerebral hemorrhage and pressure.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Evaluation of CN-105 in Subject With Acute Supratentorial Intracerebral Hemorrhage
NCT03711903
Study of Stroke Related Edema Treatments
NCT01954290
A Proof of Concept Study to Evaluate CN-105 in ICH Patients
NCT03168581
Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage
NCT00226096
Colchicine for the Reduction of Dependency and Vascular Events After an Acute Intracerebral Hemorrhage
NCT06587737
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The seven patients in this study will receive 40mg/day of the study medication conivaptan. In this early phase study, our focus will be to assess the safety and tolerability of this medication. The available clinical data on conivaptan in the neurocritical care population suggest the potential harm is negligible. Data in TBI patients demonstrate conivaptan is safe and well tolerated using a single dose (20mg) to increase Na+ in a controlled fashion to reduce ICP. Previous work has demonstrated the safety and tolerability of conivaptan, in doses ranging from 20-80mg/day, in the neurocritical care population. Conivaptan has been demonstrated to be safe and effective in lowering ICP, and increasing serum sodium, in the neurocritical care population. Also noted have been improvements in cerebral perfusion pressure (CPP) and stable blood pressure, and a prolonged reduction in ICP. Finally, the method of intermittent bolus dosing of conivaptan is equally effective in raising and maintaining serum sodium in the neurocritical care population as continuous infusion, with potentially less risk of adverse reactions including phlebitis.
Conivaptan, a non-selective Arginine-Vasopressin (AVP) V1A/V2 antagonist that reduces aquaporin 4 production and promotes aquaresis, is approved for the treatment of euvolemic and hypervolemic hyponatremia. The exact cause of the observed reduction in ICP with conivaptan is uncertain. However, the mechanism most likely represents a combination of an acute pure aquaresis, removing free water from brain tissue, and a sustained down regulation of aquaporin 4 to abate/slow development of CE. The V2 antagonism of conivaptan promotes free water loss, and the V1 antagonism may improve cerebral blood flow (CBF) and reduce blood brain barrier permeability. Notably, serum sodium tends to correlate inversely with both ICP and CE. The early use of conivaptan could potentially be used clinically to reduce CE by these means.
It is with this in mind, the research team feels justified in pursuing this study with the hopes that the data obtained will lead to potential good and removal of harm in future patients with this devastating disease. Given the enormous costs of ICH, problems with current therapies, and variability in treatment, there is an urgent need to identify a therapy that has a better safety and effectiveness profile compared to the currently used agents. This study will use a dose (40mg/day) currently approved. Further, given that the primary purpose of the use of this medication in this study is not to correct hyponatremia, an investigational new drug (IND) application to the FDA was submitted, and the study was determined exempt.
Our central hypothesis is that through reductions in aquaporin-4 (AQP4) expression, the early use of conivaptan will reduce CE while also being safe to the patient. Our long term goal is to show that early use of conivaptan in ICH will reduce CE. If this reduction is possible, we hypothesize improved outcome and reducing the need for rescue therapies, ICU length of stay, and overall treatment cost will follow. However, more data is needed to evaluate the dosing and amount of drug. With respect to conivaptan's efficacy in correction of hyponatremia, a direct dose-response relationship exists. Further, this effect was more noted at milder degrees of hyponatremia.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Conivaptan Treatment Group
All seven patients in this arm will receive conivaptan as described in Interventions.
Conivaptan
Patients will receive 20mg IV of the study drug every 12 hours equaling 40mg/day over 2 days (4 doses total), in addition to the standardized ICH management targets using the PI's version of standardized ICH management targets.Usual standard of care can include sedation and analgesia as needed, elevation of the head of the bed, mannitol and/or saline as needed to reduce ICP, and temperature control with antipyretics such as acetaminophen.
The conivaptan bolus (20mg), which is premixed with 100ml of 5% dextrose in water, is infused (peripherally) over 30 minutes, most commonly through an already placed central line.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Conivaptan
Patients will receive 20mg IV of the study drug every 12 hours equaling 40mg/day over 2 days (4 doses total), in addition to the standardized ICH management targets using the PI's version of standardized ICH management targets.Usual standard of care can include sedation and analgesia as needed, elevation of the head of the bed, mannitol and/or saline as needed to reduce ICP, and temperature control with antipyretics such as acetaminophen.
The conivaptan bolus (20mg), which is premixed with 100ml of 5% dextrose in water, is infused (peripherally) over 30 minutes, most commonly through an already placed central line.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Diagnosis of primary ICH \> 20 cc in volume.
3. Enrollment within 48 hours from initial symptoms.
4. Signed informed consent from the patient or obtained via their legally authorized representative (if the patient is not able to sign the informed consent themselves). The patient's decisional capacity to either provide or refuse consent will be determined using the Glasgow Coma Scale (GCS), which is being assessed at baseline and at 24 hours (+/-6hrs) after enrollment. A potential study participant with a GCS \> 14 will be asked to provide their own initial study consent. A GCS ≤ 14 would indicate the need to pursue consent via legally authorized representative.
Exclusion Criteria
2. Glomerular filtration rate (GFR) of \<30 mL/minute at time of admission.
3. Participation in another study for ICH or intraventricular hemorrhage.
4. ICH related to infection, thrombolysis, subarachnoid hemorrhage, trauma or tumor.
5. Presence of HIV or active fungal infection that is known based on information in the electronic medical record (EMR).
6. Continued use of digoxin or amlodipine (as recommended by the manufacturer due to cytochrome P450 3A4 "CYP3A" inhibition).
7. Active hepatic failure as defined by aspartate aminotransferase (AST) \>160 units/L and/or alanine transaminase (ALT) \>180 units/L, or total bilirubin levels greater than four times normal levels (\>4.8mg/dL).
8. Serum Na+\> 145 mmol/L (admission labs or any time prior to recruitment/enrollment).
9. Unable to receive conivaptan based on contraindications indicated by the manufacturer.
10. Pregnant or lactating females.
11. Not expected to survive within 48 hours of admission, or a presumed diagnosis of brain death.
19 Years
79 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Jesse Corry
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jesse Corry
Neurologist
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jesse J Corry, MD
Role: PRINCIPAL_INVESTIGATOR
Allina Health
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
United Hospital
Saint Paul, Minnesota, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Annane D, Decaux G, Smith N; Conivaptan Study Group. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am J Med Sci. 2009 Jan;337(1):28-36. doi: 10.1097/MAJ.0b013e31817b8148.
Bulger EM, May S, Brasel KJ, Schreiber M, Kerby JD, Tisherman SA, Newgard C, Slutsky A, Coimbra R, Emerson S, Minei JP, Bardarson B, Kudenchuk P, Baker A, Christenson J, Idris A, Davis D, Fabian TC, Aufderheide TP, Callaway C, Williams C, Banek J, Vaillancourt C, van Heest R, Sopko G, Hata JS, Hoyt DB; ROC Investigators. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA. 2010 Oct 6;304(13):1455-64. doi: 10.1001/jama.2010.1405.
Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T; Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012 Dec 27;367(26):2471-81. doi: 10.1056/NEJMoa1207363. Epub 2012 Dec 12.
Corry JJ, Varelas P, Abdelhak T, Morris S, Hawley M, Hawkins A, Jankowski M. Variable change in renal function by hypertonic saline. World J Crit Care Med. 2014 May 4;3(2):61-7. doi: 10.5492/wjccm.v3.i2.61. eCollection 2014 May 4.
Corry JJ. The use of targeted temperature management for elevated intracranial pressure. Curr Neurol Neurosci Rep. 2014 Jun;14(6):453. doi: 10.1007/s11910-014-0453-9.
Corry JJ. Use of hypothermia in the intensive care unit. World J Crit Care Med. 2012 Aug 4;1(4):106-22. doi: 10.5492/wjccm.v1.i4.106. eCollection 2012 Aug 4.
Costello-Boerrigter LC, Boerrigter G, Burnett JC Jr. Pharmacology of vasopressin antagonists. Heart Fail Rev. 2009 Jun;14(2):75-82. doi: 10.1007/s10741-008-9108-8. Epub 2008 Sep 3.
Adams Jr HP. Handbook of Cerebrovascular Disease. Ed.2 Marcel Dekker, Inc, New York, 2005
Cumberland Pharmaceuticals, Inc. Vaprisol ® (conivaptan hydrochloride injection) [package insert]. Nashville, TN, April 2014.
Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care. 2011 Feb;14(1):97-102. doi: 10.1007/s12028-010-9366-x.
Diringer MN, Edwards DF. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med. 2001 Mar;29(3):635-40. doi: 10.1097/00003246-200103000-00031.
FDA. http://www.fda.gov/drugs/drugsafety/drugshortages/ucm050792.htm (2010)
Fernandez N, Martinez MA, Garcia-Villalon AL, Monge L, Dieguez G. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol. 2001 Apr;132(8):1837-44. doi: 10.1038/sj.bjp.0704034.
Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, Treggiari M. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011 Jun;14(3):354-60. doi: 10.1007/s12028-011-9525-8.
Gazitua S, Scott JB, Chou CC, Haddy FJ. Effect of osmolarity on canine renal vascular resistance. Am J Physiol. 1969 Oct;217(4):1216-23. doi: 10.1152/ajplegacy.1969.217.4.1216. No abstract available.
Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002 Nov;33(11):2631-5. doi: 10.1161/01.str.0000035284.12699.84.
Grande PO, Romner B. Osmotherapy in brain edema: a questionable therapy. J Neurosurg Anesthesiol. 2012 Oct;24(4):407-12. doi: 10.1097/01.ana.0000419730.29492.8b.
Hays A, Lazaridid C, et al. Osmotherapy in clinical practice: A survey of practitioners. Abstract Supplement. Volume 13. Neurocritical Care. 2010.
Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001 Apr;32(4):891-7. doi: 10.1161/01.str.32.4.891.
Kleindienst A, Fazzina G, Dunbar JG, Glisson R, Marmarou A. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl. 2006;96:303-6. doi: 10.1007/3-211-30714-1_65.
Li YH, Sun SQ. [Expression of aquaporin - 4 protein in brain from rats with hemorrhagic edema]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2003 Sep;15(9):538-41. Chinese.
Liu X, Nakayama S, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke. Neurocrit Care. 2010 Feb;12(1):124-31. doi: 10.1007/s12028-009-9277-x.
Marik PE, Rivera R. Therapeutic effect of conivaptan bolus dosing in hyponatremic neurosurgical patients. Pharmacotherapy. 2013 Jan;33(1):51-5. doi: 10.1002/phar.1169.
Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994 Aug;44(8):1379-84. doi: 10.1212/wnl.44.8.1379.
McGraw CP, Howard G. Effect of mannitol on increased intracranial pressure. Neurosurgery. 1983 Sep;13(3):269-71. doi: 10.1227/00006123-198309000-00009.
Migliati ER, Amiry-Moghaddam M, Froehner SC, Adams ME, Ottersen OP, Bhardwaj A. Na(+)-K (+)-2Cl (-) cotransport inhibitor attenuates cerebral edema following experimental stroke via the perivascular pool of aquaporin-4. Neurocrit Care. 2010 Aug;13(1):123-31. doi: 10.1007/s12028-010-9376-8.
Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 2009;11(1):14-9. doi: 10.1007/s12028-008-9179-3. Epub 2009 Jan 4.
Naidech AM, Paparello J, Liebling SM, Bassin SL, Levasseur K, Alberts MJ, Bernstein RA, Muro K. Use of Conivaptan (Vaprisol) for hyponatremic neuro-ICU patients. Neurocrit Care. 2010 Aug;13(1):57-61. doi: 10.1007/s12028-010-9379-5.
Nathan BR. Cerebral correlates of hyponatremia. Neurocrit Care. 2007;6(1):72-8. doi: 10.1385/NCC:6:1:72.
National PBM Drug Monograph. Conivaptan Hydrochloride Injection (Vaprisol). 2006. [Appendix 6]
Nau R, Desel H, Lassek C, Thiel A, Schinschke S, Rossing R, Kolenda H, Prange HW. Slow elimination of mannitol from human cerebrospinal fluid. Eur J Clin Pharmacol. 1997;53(3-4):271-4. doi: 10.1007/s002280050375.
Onuoho A, Human T, Dringer MN, Dhar R. Predictors of the Response to a Bolus of Conivaptan in Patients with Acute Hyponatremia. Abstract Supplement. Volume 13. Neurocritical Care. 2010.
Rosenberg GA, Scremin O, Estrada E, Kyner WT. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992 Dec;23(12):1767-73; discussion 1773-4. doi: 10.1161/01.str.23.12.1767.
Ross WD. The right and the good. Hackett Pub Co Inc (July 1988). ISBN-13: 978-0872200586.
Sheth KN, Kimberly WT, Elm JJ, Kent TA, Mandava P, Yoo AJ, Thomalla G, Campbell B, Donnan GA, Davis SM, Albers GW, Jacobson S, Simard JM, Stern BJ. Pilot study of intravenous glyburide in patients with a large ischemic stroke. Stroke. 2014 Jan;45(1):281-3. doi: 10.1161/STROKEAHA.113.003352. Epub 2013 Nov 5.
Strandvik GF. Hypertonic saline in critical care: a review of the literature and guidelines for use in hypotensive states and raised intracranial pressure. Anaesthesia. 2009 Sep;64(9):990-1003. doi: 10.1111/j.1365-2044.2009.05986.x.
Sun Z, Zhao Z, Zhao S, Sheng Y, Zhao Z, Gao C, Li J, Liu X. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo. Mol Biol Rep. 2009 May;36(5):1119-27. doi: 10.1007/s11033-008-9287-3. Epub 2008 Jun 24.
Szmydynger-Chodobska J, Chung I, Kozniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma. 2004 Aug;21(8):1090-102. doi: 10.1089/0897715041651033.
Taya K, Gulsen S, Okuno K, Prieto R, Marmarou CR, Marmarou A. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425-9. doi: 10.1007/978-3-211-85578-2_83.
Thiex R, Tsirka SE. Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurg Focus. 2007 May 15;22(5):E6. doi: 10.3171/foc.2007.22.5.7.
Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke. 1996 Sep;27(9):1459-66. doi: 10.1161/01.str.27.9.1459.
Trabold R, Krieg S, Scholler K, Plesnila N. Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008 Dec;25(12):1459-65. doi: 10.1089/neu.2008.0597.
Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011 Jan;42(1):73-80. doi: 10.1161/STROKEAHA.110.590646. Epub 2010 Dec 16.
Verbalis JG, Zeltser D, Smith N, Barve A, Andoh M. Assessment of the efficacy and safety of intravenous conivaptan in patients with euvolaemic hyponatraemia: subgroup analysis of a randomized, controlled study. Clin Endocrinol (Oxf). 2008 Jul;69(1):159-68. doi: 10.1111/j.1365-2265.2007.03149.x. Epub 2008 Jul 1.
Volbers B, Willfarth W, Kuramatsu JB, Struffert T, Dorfler A, Huttner HB, Schwab S, Staykov D. Impact of Perihemorrhagic Edema on Short-Term Outcome After Intracerebral Hemorrhage. Neurocrit Care. 2016 Jun;24(3):404-12. doi: 10.1007/s12028-015-0185-y.
Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983 Mar;71(3):726-35. doi: 10.1172/jci110820.
Wright WL, Asbury WH, Gilmore JL, Samuels OB. Conivaptan for hyponatremia in the neurocritical care unit. Neurocrit Care. 2009;11(1):6-13. doi: 10.1007/s12028-008-9152-1. Epub 2008 Nov 12.
Yool AJ, Brown EA, Flynn GA. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol. 2010 Apr;37(4):403-9. doi: 10.1111/j.1440-1681.2009.05244.x. Epub 2009 Jun 29.
Zandor section of the Handbook of Experimental Pharmacology, Editors-in-chief: Starke, Klaus, Hofmann, Franz B. ISSN: 0171-2004.
Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N; Conivaptan Study Group. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27(5):447-57. doi: 10.1159/000106456. Epub 2007 Jul 26.
Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008 Sep;36(9):2634-40. doi: 10.1097/CCM.0b013e3181847853.
Corry JJ, Asaithambi G, Shaik AM, Lassig JP, Marino EH, Ho BM, Castle AL, Banerji N, Tipps ME. Conivaptan for the Reduction of Cerebral Edema in Intracerebral Hemorrhage: A Safety and Tolerability Study. Clin Drug Investig. 2020 May;40(5):503-509. doi: 10.1007/s40261-020-00911-9.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol
Document Type: Statistical Analysis Plan
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NSJC-1601
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.