Conivaptan for the Reduction of Cerebral Edema in Intracerebral Hemorrhage- A Safety and Tolerability Study

NCT ID: NCT03000283

Last Updated: 2020-04-17

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE1

Total Enrollment

7 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-03-22

Study Completion Date

2019-04-15

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The goal of this study is to preliminarily determine/estimate feasibility and whether frequent and early conivaptan use, at a dose currently determined to be safe (i.e., 40mg/day), is safe and well-tolerated in patients with cerebral edema from intracerebral hemorrhage (ICH) and pressure (ICP). A further goal is to preliminarily estimate whether conivaptan at this same dose can reduce cerebral edema (CE) in these same patients. This study is also an essential first step in understanding the role of conivaptan in CE management.

Hypothesis: The frequent and early use of conivaptan at 40mg/day will be safe and well-tolerated, and also reduce cerebral edema, in patients with intracerebral hemorrhage and pressure.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This is a single-center, open-label, safety and tolerability study. Based on findings in the literature from both animal research and clinical observations with ICH (intracerebral hemorrhage) associated with TBI (traumatic brain injury), this study will begin to look at the safety, tolerability, as well as potential effectiveness, of conivaptan to reduce CE (cerebral edema) in patients with non-traumatic ICH.

The seven patients in this study will receive 40mg/day of the study medication conivaptan. In this early phase study, our focus will be to assess the safety and tolerability of this medication. The available clinical data on conivaptan in the neurocritical care population suggest the potential harm is negligible. Data in TBI patients demonstrate conivaptan is safe and well tolerated using a single dose (20mg) to increase Na+ in a controlled fashion to reduce ICP. Previous work has demonstrated the safety and tolerability of conivaptan, in doses ranging from 20-80mg/day, in the neurocritical care population. Conivaptan has been demonstrated to be safe and effective in lowering ICP, and increasing serum sodium, in the neurocritical care population. Also noted have been improvements in cerebral perfusion pressure (CPP) and stable blood pressure, and a prolonged reduction in ICP. Finally, the method of intermittent bolus dosing of conivaptan is equally effective in raising and maintaining serum sodium in the neurocritical care population as continuous infusion, with potentially less risk of adverse reactions including phlebitis.

Conivaptan, a non-selective Arginine-Vasopressin (AVP) V1A/V2 antagonist that reduces aquaporin 4 production and promotes aquaresis, is approved for the treatment of euvolemic and hypervolemic hyponatremia. The exact cause of the observed reduction in ICP with conivaptan is uncertain. However, the mechanism most likely represents a combination of an acute pure aquaresis, removing free water from brain tissue, and a sustained down regulation of aquaporin 4 to abate/slow development of CE. The V2 antagonism of conivaptan promotes free water loss, and the V1 antagonism may improve cerebral blood flow (CBF) and reduce blood brain barrier permeability. Notably, serum sodium tends to correlate inversely with both ICP and CE. The early use of conivaptan could potentially be used clinically to reduce CE by these means.

It is with this in mind, the research team feels justified in pursuing this study with the hopes that the data obtained will lead to potential good and removal of harm in future patients with this devastating disease. Given the enormous costs of ICH, problems with current therapies, and variability in treatment, there is an urgent need to identify a therapy that has a better safety and effectiveness profile compared to the currently used agents. This study will use a dose (40mg/day) currently approved. Further, given that the primary purpose of the use of this medication in this study is not to correct hyponatremia, an investigational new drug (IND) application to the FDA was submitted, and the study was determined exempt.

Our central hypothesis is that through reductions in aquaporin-4 (AQP4) expression, the early use of conivaptan will reduce CE while also being safe to the patient. Our long term goal is to show that early use of conivaptan in ICH will reduce CE. If this reduction is possible, we hypothesize improved outcome and reducing the need for rescue therapies, ICU length of stay, and overall treatment cost will follow. However, more data is needed to evaluate the dosing and amount of drug. With respect to conivaptan's efficacy in correction of hyponatremia, a direct dose-response relationship exists. Further, this effect was more noted at milder degrees of hyponatremia.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cerebral Hemorrhage Cerebral Edema Intracerebral Hemorrhage Stroke

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Conivaptan Treatment Group

All seven patients in this arm will receive conivaptan as described in Interventions.

Group Type EXPERIMENTAL

Conivaptan

Intervention Type DRUG

Patients will receive 20mg IV of the study drug every 12 hours equaling 40mg/day over 2 days (4 doses total), in addition to the standardized ICH management targets using the PI's version of standardized ICH management targets.Usual standard of care can include sedation and analgesia as needed, elevation of the head of the bed, mannitol and/or saline as needed to reduce ICP, and temperature control with antipyretics such as acetaminophen.

The conivaptan bolus (20mg), which is premixed with 100ml of 5% dextrose in water, is infused (peripherally) over 30 minutes, most commonly through an already placed central line.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Conivaptan

Patients will receive 20mg IV of the study drug every 12 hours equaling 40mg/day over 2 days (4 doses total), in addition to the standardized ICH management targets using the PI's version of standardized ICH management targets.Usual standard of care can include sedation and analgesia as needed, elevation of the head of the bed, mannitol and/or saline as needed to reduce ICP, and temperature control with antipyretics such as acetaminophen.

The conivaptan bolus (20mg), which is premixed with 100ml of 5% dextrose in water, is infused (peripherally) over 30 minutes, most commonly through an already placed central line.

Intervention Type DRUG

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Vaprisol

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Age \>18 years old and \< 80 years.
2. Diagnosis of primary ICH \> 20 cc in volume.
3. Enrollment within 48 hours from initial symptoms.
4. Signed informed consent from the patient or obtained via their legally authorized representative (if the patient is not able to sign the informed consent themselves). The patient's decisional capacity to either provide or refuse consent will be determined using the Glasgow Coma Scale (GCS), which is being assessed at baseline and at 24 hours (+/-6hrs) after enrollment. A potential study participant with a GCS \> 14 will be asked to provide their own initial study consent. A GCS ≤ 14 would indicate the need to pursue consent via legally authorized representative.

Exclusion Criteria

1. Current need for renal replacement therapy (RRT).
2. Glomerular filtration rate (GFR) of \<30 mL/minute at time of admission.
3. Participation in another study for ICH or intraventricular hemorrhage.
4. ICH related to infection, thrombolysis, subarachnoid hemorrhage, trauma or tumor.
5. Presence of HIV or active fungal infection that is known based on information in the electronic medical record (EMR).
6. Continued use of digoxin or amlodipine (as recommended by the manufacturer due to cytochrome P450 3A4 "CYP3A" inhibition).
7. Active hepatic failure as defined by aspartate aminotransferase (AST) \>160 units/L and/or alanine transaminase (ALT) \>180 units/L, or total bilirubin levels greater than four times normal levels (\>4.8mg/dL).
8. Serum Na+\> 145 mmol/L (admission labs or any time prior to recruitment/enrollment).
9. Unable to receive conivaptan based on contraindications indicated by the manufacturer.
10. Pregnant or lactating females.
11. Not expected to survive within 48 hours of admission, or a presumed diagnosis of brain death.
Minimum Eligible Age

19 Years

Maximum Eligible Age

79 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Jesse Corry

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Jesse Corry

Neurologist

Responsibility Role SPONSOR_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jesse J Corry, MD

Role: PRINCIPAL_INVESTIGATOR

Allina Health

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

United Hospital

Saint Paul, Minnesota, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Annane D, Decaux G, Smith N; Conivaptan Study Group. Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia. Am J Med Sci. 2009 Jan;337(1):28-36. doi: 10.1097/MAJ.0b013e31817b8148.

Reference Type BACKGROUND
PMID: 19057376 (View on PubMed)

Bulger EM, May S, Brasel KJ, Schreiber M, Kerby JD, Tisherman SA, Newgard C, Slutsky A, Coimbra R, Emerson S, Minei JP, Bardarson B, Kudenchuk P, Baker A, Christenson J, Idris A, Davis D, Fabian TC, Aufderheide TP, Callaway C, Williams C, Banek J, Vaillancourt C, van Heest R, Sopko G, Hata JS, Hoyt DB; ROC Investigators. Out-of-hospital hypertonic resuscitation following severe traumatic brain injury: a randomized controlled trial. JAMA. 2010 Oct 6;304(13):1455-64. doi: 10.1001/jama.2010.1405.

Reference Type BACKGROUND
PMID: 20924011 (View on PubMed)

Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T; Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012 Dec 27;367(26):2471-81. doi: 10.1056/NEJMoa1207363. Epub 2012 Dec 12.

Reference Type BACKGROUND
PMID: 23234472 (View on PubMed)

Corry JJ, Varelas P, Abdelhak T, Morris S, Hawley M, Hawkins A, Jankowski M. Variable change in renal function by hypertonic saline. World J Crit Care Med. 2014 May 4;3(2):61-7. doi: 10.5492/wjccm.v3.i2.61. eCollection 2014 May 4.

Reference Type BACKGROUND
PMID: 24892021 (View on PubMed)

Corry JJ. The use of targeted temperature management for elevated intracranial pressure. Curr Neurol Neurosci Rep. 2014 Jun;14(6):453. doi: 10.1007/s11910-014-0453-9.

Reference Type BACKGROUND
PMID: 24740807 (View on PubMed)

Corry JJ. Use of hypothermia in the intensive care unit. World J Crit Care Med. 2012 Aug 4;1(4):106-22. doi: 10.5492/wjccm.v1.i4.106. eCollection 2012 Aug 4.

Reference Type BACKGROUND
PMID: 24701408 (View on PubMed)

Costello-Boerrigter LC, Boerrigter G, Burnett JC Jr. Pharmacology of vasopressin antagonists. Heart Fail Rev. 2009 Jun;14(2):75-82. doi: 10.1007/s10741-008-9108-8. Epub 2008 Sep 3.

Reference Type BACKGROUND
PMID: 18766438 (View on PubMed)

Adams Jr HP. Handbook of Cerebrovascular Disease. Ed.2 Marcel Dekker, Inc, New York, 2005

Reference Type BACKGROUND

Cumberland Pharmaceuticals, Inc. Vaprisol ® (conivaptan hydrochloride injection) [package insert]. Nashville, TN, April 2014.

Reference Type BACKGROUND

Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care. 2011 Feb;14(1):97-102. doi: 10.1007/s12028-010-9366-x.

Reference Type BACKGROUND
PMID: 20440600 (View on PubMed)

Diringer MN, Edwards DF. Admission to a neurologic/neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med. 2001 Mar;29(3):635-40. doi: 10.1097/00003246-200103000-00031.

Reference Type BACKGROUND
PMID: 11373434 (View on PubMed)

FDA. http://www.fda.gov/drugs/drugsafety/drugshortages/ucm050792.htm (2010)

Reference Type BACKGROUND

Fernandez N, Martinez MA, Garcia-Villalon AL, Monge L, Dieguez G. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol. 2001 Apr;132(8):1837-44. doi: 10.1038/sj.bjp.0704034.

Reference Type BACKGROUND
PMID: 11309256 (View on PubMed)

Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, Treggiari M. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care. 2011 Jun;14(3):354-60. doi: 10.1007/s12028-011-9525-8.

Reference Type BACKGROUND
PMID: 21409494 (View on PubMed)

Gazitua S, Scott JB, Chou CC, Haddy FJ. Effect of osmolarity on canine renal vascular resistance. Am J Physiol. 1969 Oct;217(4):1216-23. doi: 10.1152/ajplegacy.1969.217.4.1216. No abstract available.

Reference Type BACKGROUND
PMID: 5824323 (View on PubMed)

Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002 Nov;33(11):2631-5. doi: 10.1161/01.str.0000035284.12699.84.

Reference Type BACKGROUND
PMID: 12411653 (View on PubMed)

Grande PO, Romner B. Osmotherapy in brain edema: a questionable therapy. J Neurosurg Anesthesiol. 2012 Oct;24(4):407-12. doi: 10.1097/01.ana.0000419730.29492.8b.

Reference Type BACKGROUND
PMID: 22955195 (View on PubMed)

Hays A, Lazaridid C, et al. Osmotherapy in clinical practice: A survey of practitioners. Abstract Supplement. Volume 13. Neurocritical Care. 2010.

Reference Type BACKGROUND

Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001 Apr;32(4):891-7. doi: 10.1161/01.str.32.4.891.

Reference Type BACKGROUND
PMID: 11283388 (View on PubMed)

Kleindienst A, Fazzina G, Dunbar JG, Glisson R, Marmarou A. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl. 2006;96:303-6. doi: 10.1007/3-211-30714-1_65.

Reference Type BACKGROUND
PMID: 16671476 (View on PubMed)

Li YH, Sun SQ. [Expression of aquaporin - 4 protein in brain from rats with hemorrhagic edema]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2003 Sep;15(9):538-41. Chinese.

Reference Type BACKGROUND
PMID: 12971848 (View on PubMed)

Liu X, Nakayama S, Amiry-Moghaddam M, Ottersen OP, Bhardwaj A. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke. Neurocrit Care. 2010 Feb;12(1):124-31. doi: 10.1007/s12028-009-9277-x.

Reference Type BACKGROUND
PMID: 19806476 (View on PubMed)

Marik PE, Rivera R. Therapeutic effect of conivaptan bolus dosing in hyponatremic neurosurgical patients. Pharmacotherapy. 2013 Jan;33(1):51-5. doi: 10.1002/phar.1169.

Reference Type BACKGROUND
PMID: 23307545 (View on PubMed)

Mayer SA, Sacco RL, Shi T, Mohr JP. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994 Aug;44(8):1379-84. doi: 10.1212/wnl.44.8.1379.

Reference Type BACKGROUND
PMID: 8058133 (View on PubMed)

McGraw CP, Howard G. Effect of mannitol on increased intracranial pressure. Neurosurgery. 1983 Sep;13(3):269-71. doi: 10.1227/00006123-198309000-00009.

Reference Type BACKGROUND
PMID: 6413884 (View on PubMed)

Migliati ER, Amiry-Moghaddam M, Froehner SC, Adams ME, Ottersen OP, Bhardwaj A. Na(+)-K (+)-2Cl (-) cotransport inhibitor attenuates cerebral edema following experimental stroke via the perivascular pool of aquaporin-4. Neurocrit Care. 2010 Aug;13(1):123-31. doi: 10.1007/s12028-010-9376-8.

Reference Type BACKGROUND
PMID: 20458553 (View on PubMed)

Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care. 2009;11(1):14-9. doi: 10.1007/s12028-008-9179-3. Epub 2009 Jan 4.

Reference Type BACKGROUND
PMID: 19123060 (View on PubMed)

Naidech AM, Paparello J, Liebling SM, Bassin SL, Levasseur K, Alberts MJ, Bernstein RA, Muro K. Use of Conivaptan (Vaprisol) for hyponatremic neuro-ICU patients. Neurocrit Care. 2010 Aug;13(1):57-61. doi: 10.1007/s12028-010-9379-5.

Reference Type BACKGROUND
PMID: 20568023 (View on PubMed)

Nathan BR. Cerebral correlates of hyponatremia. Neurocrit Care. 2007;6(1):72-8. doi: 10.1385/NCC:6:1:72.

Reference Type BACKGROUND
PMID: 17356196 (View on PubMed)

National PBM Drug Monograph. Conivaptan Hydrochloride Injection (Vaprisol). 2006. [Appendix 6]

Reference Type BACKGROUND

Nau R, Desel H, Lassek C, Thiel A, Schinschke S, Rossing R, Kolenda H, Prange HW. Slow elimination of mannitol from human cerebrospinal fluid. Eur J Clin Pharmacol. 1997;53(3-4):271-4. doi: 10.1007/s002280050375.

Reference Type BACKGROUND
PMID: 9476044 (View on PubMed)

Onuoho A, Human T, Dringer MN, Dhar R. Predictors of the Response to a Bolus of Conivaptan in Patients with Acute Hyponatremia. Abstract Supplement. Volume 13. Neurocritical Care. 2010.

Reference Type BACKGROUND

Rosenberg GA, Scremin O, Estrada E, Kyner WT. Arginine vasopressin V1-antagonist and atrial natriuretic peptide reduce hemorrhagic brain edema in rats. Stroke. 1992 Dec;23(12):1767-73; discussion 1773-4. doi: 10.1161/01.str.23.12.1767.

Reference Type BACKGROUND
PMID: 1448828 (View on PubMed)

Ross WD. The right and the good. Hackett Pub Co Inc (July 1988). ISBN-13: 978-0872200586.

Reference Type BACKGROUND

Sheth KN, Kimberly WT, Elm JJ, Kent TA, Mandava P, Yoo AJ, Thomalla G, Campbell B, Donnan GA, Davis SM, Albers GW, Jacobson S, Simard JM, Stern BJ. Pilot study of intravenous glyburide in patients with a large ischemic stroke. Stroke. 2014 Jan;45(1):281-3. doi: 10.1161/STROKEAHA.113.003352. Epub 2013 Nov 5.

Reference Type BACKGROUND
PMID: 24193798 (View on PubMed)

Strandvik GF. Hypertonic saline in critical care: a review of the literature and guidelines for use in hypotensive states and raised intracranial pressure. Anaesthesia. 2009 Sep;64(9):990-1003. doi: 10.1111/j.1365-2044.2009.05986.x.

Reference Type BACKGROUND
PMID: 19686485 (View on PubMed)

Sun Z, Zhao Z, Zhao S, Sheng Y, Zhao Z, Gao C, Li J, Liu X. Recombinant hirudin treatment modulates aquaporin-4 and aquaporin-9 expression after intracerebral hemorrhage in vivo. Mol Biol Rep. 2009 May;36(5):1119-27. doi: 10.1007/s11033-008-9287-3. Epub 2008 Jun 24.

Reference Type BACKGROUND
PMID: 18574711 (View on PubMed)

Szmydynger-Chodobska J, Chung I, Kozniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A. Increased expression of vasopressin v1a receptors after traumatic brain injury. J Neurotrauma. 2004 Aug;21(8):1090-102. doi: 10.1089/0897715041651033.

Reference Type BACKGROUND
PMID: 15319008 (View on PubMed)

Taya K, Gulsen S, Okuno K, Prieto R, Marmarou CR, Marmarou A. Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. Acta Neurochir Suppl. 2008;102:425-9. doi: 10.1007/978-3-211-85578-2_83.

Reference Type BACKGROUND
PMID: 19388360 (View on PubMed)

Thiex R, Tsirka SE. Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurg Focus. 2007 May 15;22(5):E6. doi: 10.3171/foc.2007.22.5.7.

Reference Type BACKGROUND
PMID: 17613237 (View on PubMed)

Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke. 1996 Sep;27(9):1459-66. doi: 10.1161/01.str.27.9.1459.

Reference Type BACKGROUND
PMID: 8784113 (View on PubMed)

Trabold R, Krieg S, Scholler K, Plesnila N. Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma. 2008 Dec;25(12):1459-65. doi: 10.1089/neu.2008.0597.

Reference Type BACKGROUND
PMID: 19118456 (View on PubMed)

Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011 Jan;42(1):73-80. doi: 10.1161/STROKEAHA.110.590646. Epub 2010 Dec 16.

Reference Type BACKGROUND
PMID: 21164136 (View on PubMed)

Verbalis JG, Zeltser D, Smith N, Barve A, Andoh M. Assessment of the efficacy and safety of intravenous conivaptan in patients with euvolaemic hyponatraemia: subgroup analysis of a randomized, controlled study. Clin Endocrinol (Oxf). 2008 Jul;69(1):159-68. doi: 10.1111/j.1365-2265.2007.03149.x. Epub 2008 Jul 1.

Reference Type BACKGROUND
PMID: 18034777 (View on PubMed)

Volbers B, Willfarth W, Kuramatsu JB, Struffert T, Dorfler A, Huttner HB, Schwab S, Staykov D. Impact of Perihemorrhagic Edema on Short-Term Outcome After Intracerebral Hemorrhage. Neurocrit Care. 2016 Jun;24(3):404-12. doi: 10.1007/s12028-015-0185-y.

Reference Type BACKGROUND
PMID: 26381282 (View on PubMed)

Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983 Mar;71(3):726-35. doi: 10.1172/jci110820.

Reference Type BACKGROUND
PMID: 6826732 (View on PubMed)

Wright WL, Asbury WH, Gilmore JL, Samuels OB. Conivaptan for hyponatremia in the neurocritical care unit. Neurocrit Care. 2009;11(1):6-13. doi: 10.1007/s12028-008-9152-1. Epub 2008 Nov 12.

Reference Type BACKGROUND
PMID: 19003543 (View on PubMed)

Yool AJ, Brown EA, Flynn GA. Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol. 2010 Apr;37(4):403-9. doi: 10.1111/j.1440-1681.2009.05244.x. Epub 2009 Jun 29.

Reference Type BACKGROUND
PMID: 19566827 (View on PubMed)

Zandor section of the Handbook of Experimental Pharmacology, Editors-in-chief: Starke, Klaus, Hofmann, Franz B. ISSN: 0171-2004.

Reference Type BACKGROUND

Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N; Conivaptan Study Group. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27(5):447-57. doi: 10.1159/000106456. Epub 2007 Jul 26.

Reference Type BACKGROUND
PMID: 17664863 (View on PubMed)

Zeynalov E, Chen CH, Froehner SC, Adams ME, Ottersen OP, Amiry-Moghaddam M, Bhardwaj A. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med. 2008 Sep;36(9):2634-40. doi: 10.1097/CCM.0b013e3181847853.

Reference Type BACKGROUND
PMID: 18679106 (View on PubMed)

Corry JJ, Asaithambi G, Shaik AM, Lassig JP, Marino EH, Ho BM, Castle AL, Banerji N, Tipps ME. Conivaptan for the Reduction of Cerebral Edema in Intracerebral Hemorrhage: A Safety and Tolerability Study. Clin Drug Investig. 2020 May;40(5):503-509. doi: 10.1007/s40261-020-00911-9.

Reference Type DERIVED
PMID: 32253717 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol

View Document

Document Type: Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

NSJC-1601

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.