Sacral Chordoma: Surgery Versus Definitive Radiation Therapy in Primary Localized Disease
NCT ID: NCT02986516
Last Updated: 2024-12-20
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
100 participants
INTERVENTIONAL
2017-03-16
2025-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
All the patients, who are candidate for the study will receive full information on the characteristics, potential effectiveness and side effects of the two alternatives treatments: radiotherapy (RT) and surgical treatment Eligible patients will be asked to be randomized in order to receive treatment A (surgery, with or without RT) or treatment B (definitive RT) Who will refuse randomization will be included in the Prospective Cohort Study (PCS) and will be treated accordingly to their choice (treatment option A or treatment option B).
The same radiotherapy and surgical regimen will be administered in the PCS and in the Randomized Clinical Trial (RCT) cohort
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Randomized Cohort
Participants who will decided to undergo to randomization, will receive surgical treatment or definitive radiotherapy according with randomization assignment
Randomized Cohort
Surgical treatment with different approach, based on the characteristics of the tumor or definitive high dose radiotherapy (carbon ion radiotherapy, proton-therapy, mixed photons-proton therapy) will be assigned by randomization
Prospective Cohort
Participants who will not decide to be randomized, will received the surgical or definite radiotherapy treatment according to their choice
Prospective cohort
Surgical treatment or definitive high dose radiotherapy will be selected by the patients and will be prospectively evaluated
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Randomized Cohort
Surgical treatment with different approach, based on the characteristics of the tumor or definitive high dose radiotherapy (carbon ion radiotherapy, proton-therapy, mixed photons-proton therapy) will be assigned by randomization
Prospective cohort
Surgical treatment or definitive high dose radiotherapy will be selected by the patients and will be prospectively evaluated
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Age≥18years
* ECOG-performance status (PS) 0-2
* No previous antineoplastic therapy
* Macroscopic tumor detectable at MRI/CT scan
* Patient amenable for surgery
* Patient amenable for RT
* Written informed consent given before the enrolment, according to International Conference on Harmonisation/good clinical practice (ICH/GCP).
Exclusion Criteria
* Inability to maintain treatment position
* Prior radiotherapy to the pelvic region
* Prior therapy for sacral chordoma (including surgery, cryoablation, hyperthermia, etc)
* Local conditions that increase the risk of RT toxicity (tumor ulcerated skin infiltration, non-healing soft tissue infection, fistula in treatment field)
* Rectal wall infiltration
* General conditions that increase the risk of RT toxicity (active sclerodermia, xeroderma pigmentosum, cutaneous porphyria)
* Presence of a second active cancer (with the exception of non-melanoma skin cancer in-situ cervix neoplasia and other in-situ neoplasia)
* Severe comorbidities resulting in a prognosis of less than 6 months
* Inability to give informed consent
* Other malignancy within the last 5 years
* Performance status ≥ 2 (ECOG).
* Significant cardiovascular disease (for example, dyspnea \> 2 NYHA)
* Significant systemic diseases grade \>3 on the NCI-CTCAE v4.03 scale, that limit patient availability, or according to investigator judgment may contribute significantly to treatment toxicity
* Women who are pregnant or breast-feeding
* Psychological, familial, social or geographic circumstances that limit the patient's ability to comply with the protocol or informed consent
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Italian Sarcoma Group
NETWORK
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Alessandro Gronchi, MD
Role: PRINCIPAL_INVESTIGATOR
Istituto Nazionale Tumori Milan-Italy
Piero Fossati, MD
Role: PRINCIPAL_INVESTIGATOR
MedAustron Graz-Austria
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medical University of Graz
Graz, , Austria
EBG GmbH MedAustron
Wiener Neustadt, Österreich, Austria
Medical Faculty Carl Gustav Carus Faculty of Medicine, Department of Radiation Oncology,
Dresden, , Germany
University Hospital Carl Gustav Carus Dresden
Dresden, , Germany
University Hospital Essen. West German Proton Therapy Center Essen
Essen, , Germany
Heidelberg Ion-Beam Therapy Center - HIT
Heidelberg, , Germany
National Center for Spinal Disorders
Budapest, , Hungary
Fondazione IRCCS Istituto Nazionale dei Tumori
Milan, MI, Italy
Istituto Ortopedico Rizzoli
Bologna, , Italy
Azienda Ospedaliero-Universitaria Careggi
Florence, , Italy
Istituto Clinico Humanitas
Milan, , Italy
I.R.C.C.S. Istituto Ortopedico Galeazzi
Milan, , Italy
Centro Nazionale di Adroterapia Oncologica - CNAO
Pavia, , Italy
II Clinica Universitaria Ortopedia e Traumatologia AO Pisa
Pisa, , Italy
Istituto Regina Elena - IFO
Rome, , Italy
Agenzia Provinciale per la Protonterapia - AtreP
Trento, , Italy
Saitama Medical Center
Saitama, , Japan
Netherlands Cancer Institute
Amsterdam, , Netherlands
Leiden University Medical Center
Leiden, , Netherlands
Norwegian Radium Hospital/Oslo Univeristi Hospital
Oslo, , Norway
Centrum Onkologii-Instytut im. Marii Skłodowskiej-Curie
Warsaw, , Poland
H. Val D'Hebron
Barcelona, , Spain
Hosptial San Pau
Barcelona, , Spain
H. San Carlos
Madrid, , Spain
Hospital Universitario Virgen del Rocío
Seville, , Spain
Hospital Universitario Doctor Peset
Valencia, , Spain
The Royal Orthopaedic Hospital
Birmingham, , United Kingdom
Royal National Orthopaedic Hospital
London, , United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Andreas Leithner, MD
Role: primary
Piero Fossati, MD
Role: primary
Mechthild Krause, Prof/MD
Role: primary
Mechthild Krause, MD
Role: primary
Beate Timmermann, MD
Role: primary
Matthias Uhl, MD
Role: primary
Peter P Varga, MD
Role: primary
Alessandro Gronchi, MD
Role: primary
Alessandro Gasbarrini, MD
Role: primary
Domenico A Campanacci, MD
Role: primary
Ferdinando Cananzi, MD
Role: primary
Maria Rosaria Fiore, MD
Role: primary
Lorenzo Andreani, MD
Role: primary
Maria Grazia Petrongari, MD
Role: primary
Toru Akiyama, MD
Role: primary
R LM Haas, MD
Role: primary
Sander Dijkstra, MD
Role: primary
Øyvind S. Bruland, MD
Role: primary
Øyvind S. Bruland, MD
Role: backup
Ramona V. Capdevila, MD
Role: primary
Gloria M. Ospina, MD
Role: primary
Nadia Hindi, MD
Role: primary
Antonio M. Benlloch, MD
Role: primary
Lee Jeys, MD
Role: primary
Rob Pollock, MD
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Stiller CA, Trama A, Brewster DH, Verne J, Bouchardy C, Navarro C, Chirlaque MD, Marcos-Gragera R, Visser O, Serraino D, Weiderpass E, Dei Tos AP, Ascoli V; RARECARE Working Group. Descriptive epidemiology of Kaposi sarcoma in Europe. Report from the RARECARE project. Cancer Epidemiol. 2014 Dec;38(6):670-8. doi: 10.1016/j.canep.2014.09.009. Epub 2014 Oct 22.
Tirabosco R, Mangham DC, Rosenberg AE, Vujovic S, Bousdras K, Pizzolitto S, De Maglio G, den Bakker MA, Di Francesco L, Kalil RK, Athanasou NA, O'Donnell P, McCarthy EF, Flanagan AM. Brachyury expression in extra-axial skeletal and soft tissue chordomas: a marker that distinguishes chordoma from mixed tumor/myoepithelioma/parachordoma in soft tissue. Am J Surg Pathol. 2008 Apr;32(4):572-80. doi: 10.1097/PAS.0b013e31815b693a.
Brien EW, Mirra JM, Ippolito V. Chondroblastoma arising from a nonepiphyseal site. Skeletal Radiol. 1995 Apr;24(3):220-2. doi: 10.1007/BF00228930.
Vujovic S, Henderson S, Presneau N, Odell E, Jacques TS, Tirabosco R, Boshoff C, Flanagan AM. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006 Jun;209(2):157-65. doi: 10.1002/path.1969.
Miozzo M, Dalpra L, Riva P, Volonta M, Macciardi F, Pericotti S, Tibiletti MG, Cerati M, Rohde K, Larizza L, Fuhrman Conti AM. A tumor suppressor locus in familial and sporadic chordoma maps to 1p36. Int J Cancer. 2000 Jul 1;87(1):68-72.
Kelley MJ, Korczak JF, Sheridan E, Yang X, Goldstein AM, Parry DM. Familial chordoma, a tumor of notochordal remnants, is linked to chromosome 7q33. Am J Hum Genet. 2001 Aug;69(2):454-60. doi: 10.1086/321982. Epub 2001 Jul 10.
Lee-Jones L, Aligianis I, Davies PA, Puga A, Farndon PA, Stemmer-Rachamimov A, Ramesh V, Sampson JR. Sacrococcygeal chordomas in patients with tuberous sclerosis complex show somatic loss of TSC1 or TSC2. Genes Chromosomes Cancer. 2004 Sep;41(1):80-5. doi: 10.1002/gcc.20052.
Dutton RV, Singleton EB. Tuberous sclerosis: a case report with aortic aneurysm and unusual rib changes. Pediatr Radiol. 1975 Jun 13;3(3):184-6. doi: 10.1007/BF01006909.
Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S, Goldstein AM, Parry DM, Kelley MJ. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009 Nov;41(11):1176-8. doi: 10.1038/ng.454. Epub 2009 Oct 4.
Schwab JH, Boland PJ, Agaram NP, Socci ND, Guo T, O'Toole GC, Wang X, Ostroumov E, Hunter CJ, Block JA, Doty S, Ferrone S, Healey JH, Antonescu CR. Chordoma and chondrosarcoma gene profile: implications for immunotherapy. Cancer Immunol Immunother. 2009 Mar;58(3):339-49. doi: 10.1007/s00262-008-0557-7. Epub 2008 Jul 19.
Oakley GJ, Fuhrer K, Seethala RR. Brachyury, SOX-9, and podoplanin, new markers in the skull base chordoma vs chondrosarcoma differential: a tissue microarray-based comparative analysis. Mod Pathol. 2008 Dec;21(12):1461-9. doi: 10.1038/modpathol.2008.144. Epub 2008 Sep 26.
Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012 Feb;13(2):e69-76. doi: 10.1016/S1470-2045(11)70337-0.
Stacchiotti S, Sommer J; Chordoma Global Consensus Group. Building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol. 2015 Feb;16(2):e71-83. doi: 10.1016/S1470-2045(14)71190-8.
Dubory A, Missenard G, Lambert B, Court C. "En bloc" resection of sacral chordomas by combined anterior and posterior surgical approach: a monocentric retrospective review about 29 cases. Eur Spine J. 2014 Sep;23(9):1940-8. doi: 10.1007/s00586-014-3196-z. Epub 2014 Jan 28.
Asavamongkolkul A, Waikakul S. Wide resection of sacral chordoma via a posterior approach. Int Orthop. 2012 Mar;36(3):607-12. doi: 10.1007/s00264-011-1381-9. Epub 2011 Oct 29.
Stacchiotti S, Casali PG, Lo Vullo S, Mariani L, Palassini E, Mercuri M, Alberghini M, Pilotti S, Zanella L, Gronchi A, Picci P. Chordoma of the mobile spine and sacrum: a retrospective analysis of a series of patients surgically treated at two referral centers. Ann Surg Oncol. 2010 Jan;17(1):211-9. doi: 10.1245/s10434-009-0740-x. Epub 2009 Oct 22.
Varga PP, Szoverfi Z, Fisher CG, Boriani S, Gokaslan ZL, Dekutoski MB, Chou D, Quraishi NA, Reynolds JJ, Luzzati A, Williams R, Fehlings MG, Germscheid NM, Lazary A, Rhines LD. Surgical treatment of sacral chordoma: prognostic variables for local recurrence and overall survival. Eur Spine J. 2015 May;24(5):1092-101. doi: 10.1007/s00586-014-3728-6. Epub 2014 Dec 23.
Kayani B, Hanna SA, Sewell MD, Saifuddin A, Molloy S, Briggs TW. A review of the surgical management of sacral chordoma. Eur J Surg Oncol. 2014 Nov;40(11):1412-20. doi: 10.1016/j.ejso.2014.04.008. Epub 2014 Apr 25.
Puri A, Agarwal MG, Shah M, Srinivas CH, Shukla PJ, Shrikhande SV, Jambhekar NA. Decision making in primary sacral tumors. Spine J. 2009 May;9(5):396-403. doi: 10.1016/j.spinee.2008.10.001. Epub 2008 Dec 6.
Chen KW, Yang HL, Kandimalla Y, Liu JY, Wang GL. Review of current treatment of sacral chordoma. Orthop Surg. 2009 Aug;1(3):238-44. doi: 10.1111/j.1757-7861.2009.00027.x.
Gennari L, Azzarelli A, Quagliuolo V. A posterior approach for the excision of sacral chordoma. J Bone Joint Surg Br. 1987 Aug;69(4):565-8. doi: 10.1302/0301-620X.69B4.3611160.
Clarke MJ, Dasenbrock H, Bydon A, Sciubba DM, McGirt MJ, Hsieh PC, Yassari R, Gokaslan ZL, Wolinsky JP. Posterior-only approach for en bloc sacrectomy: clinical outcomes in 36 consecutive patients. Neurosurgery. 2012 Aug;71(2):357-64; discussion 364. doi: 10.1227/NEU.0b013e31825d01d4.
Weitao Y, Qiqing C, Songtao G, Jiaqiang W. Use of gluteus maximus adipomuscular sliding flaps in the reconstruction of sacral defects after tumor resection. World J Surg Oncol. 2013 May 23;11:110. doi: 10.1186/1477-7819-11-110.
Doita M, Harada T, Iguchi T, Sumi M, Sha H, Yoshiya S, Kurosaka M. Total sacrectomy and reconstruction for sacral tumors. Spine (Phila Pa 1976). 2003 Aug 1;28(15):E296-301. doi: 10.1097/01.BRS.0000083230.12704.E3.
Zhang HY, Thongtrangan I, Balabhadra RS, Murovic JA, Kim DH. Surgical techniques for total sacrectomy and spinopelvic reconstruction. Neurosurg Focus. 2003 Aug 15;15(2):E5. doi: 10.3171/foc.2003.15.2.5.
Kim JE, Pang J, Christensen JM, Coon D, Zadnik PL, Wolinsky JP, Gokaslan ZL, Bydon A, Sciubba DM, Witham T, Redett RJ, Sacks JM. Soft-tissue reconstruction after total en bloc sacrectomy. J Neurosurg Spine. 2015 Jun;22(6):571-81. doi: 10.3171/2014.10.SPINE14114. Epub 2015 Mar 27.
Maricevich M, Maricevich R, Chim H, Moran SL, Rose PS, Mardini S. Reconstruction following partial and total sacrectomy defects: an analysis of outcomes and complications. J Plast Reconstr Aesthet Surg. 2014 Sep;67(9):1257-66. doi: 10.1016/j.bjps.2014.05.001. Epub 2014 May 20.
Imai R, Kamada T, Sugahara S, Tsuji H, Tsujii H. Carbon ion radiotherapy for sacral chordoma. Br J Radiol. 2011 Dec;84 Spec No 1(Spec Iss 1):S48-54. doi: 10.1259/bjr/13783281. Epub 2011 Mar 22.
Yanagi T, Kamada T, Tsuji H, Imai R, Serizawa I, Tsujii H. Dose-volume histogram and dose-surface histogram analysis for skin reactions to carbon ion radiotherapy for bone and soft tissue sarcoma. Radiother Oncol. 2010 Apr;95(1):60-5. doi: 10.1016/j.radonc.2009.08.041. Epub 2009 Sep 18.
Mima M, Demizu Y, Jin D, Hashimoto N, Takagi M, Terashima K, Fujii O, Niwa Y, Akagi T, Daimon T, Hishikawa Y, Abe M, Murakami M, Sasaki R, Fuwa N. Particle therapy using carbon ions or protons as a definitive therapy for patients with primary sacral chordoma. Br J Radiol. 2014 Jan;87(1033):20130512. doi: 10.1259/bjr.20130512. Epub 2013 Nov 28.
Uhl M, Edler L, Jensen AD, Habl G, Oelmann J, Roder F, Jackel O, Debus J, Herfarth K. Randomized phase II trial of hypofractionated proton versus carbon ion radiation therapy in patients with sacrococcygeal chordoma-the ISAC trial protocol. Radiat Oncol. 2014 Apr 29;9:100. doi: 10.1186/1748-717X-9-100.
Fossati P, Molinelli S, Matsufuji N, Ciocca M, Mirandola A, Mairani A, Mizoe J, Hasegawa A, Imai R, Kamada T, Orecchia R, Tsujii H. Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol. 2012 Nov 21;57(22):7543-54. doi: 10.1088/0031-9155/57/22/7543. Epub 2012 Oct 26.
Steinstrater O, Grun R, Scholz U, Friedrich T, Durante M, Scholz M. Mapping of RBE-weighted doses between HIMAC- and LEM-Based treatment planning systems for carbon ion therapy. Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):854-60. doi: 10.1016/j.ijrobp.2012.01.038. Epub 2012 Apr 6.
DeLaney TF, Liebsch NJ, Pedlow FX, Adams J, Dean S, Yeap BY, McManus P, Rosenberg AE, Nielsen GP, Harmon DC, Spiro IJ, Raskin KA, Suit HD, Yoon SS, Hornicek FJ. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys. 2009 Jul 1;74(3):732-9. doi: 10.1016/j.ijrobp.2008.08.058. Epub 2008 Dec 25.
DeLaney TF, Liebsch NJ, Pedlow FX, Adams J, Weyman EA, Yeap BY, Depauw N, Nielsen GP, Harmon DC, Yoon SS, Chen YL, Schwab JH, Hornicek FJ. Long-term results of Phase II study of high dose photon/proton radiotherapy in the management of spine chordomas, chondrosarcomas, and other sarcomas. J Surg Oncol. 2014 Aug;110(2):115-22. doi: 10.1002/jso.23617. Epub 2014 Apr 19.
Chen YL, Liebsch N, Kobayashi W, Goldberg S, Kirsch D, Calkins G, Childs S, Schwab J, Hornicek F, DeLaney T. Definitive high-dose photon/proton radiotherapy for unresected mobile spine and sacral chordomas. Spine (Phila Pa 1976). 2013 Jul 1;38(15):E930-6. doi: 10.1097/BRS.0b013e318296e7d7.
Staab A, Rutz HP, Ares C, Timmermann B, Schneider R, Bolsi A, Albertini F, Lomax A, Goitein G, Hug E. Spot-scanning-based proton therapy for extracranial chordoma. Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):e489-96. doi: 10.1016/j.ijrobp.2011.02.018. Epub 2011 Apr 15.
Terezakis SA, Lovelock DM, Bilsky MH, Hunt MA, Zatcky J, Yamada Y. Image-guided intensity-modulated photon radiotherapy using multifractionated regimen to paraspinal chordomas and rare sarcomas. Int J Radiat Oncol Biol Phys. 2007 Dec 1;69(5):1502-8. doi: 10.1016/j.ijrobp.2007.05.019. Epub 2007 Aug 6.
Yamada Y, Laufer I, Cox BW, Lovelock DM, Maki RG, Zatcky JM, Boland PJ, Bilsky MH. Preliminary results of high-dose single-fraction radiotherapy for the management of chordomas of the spine and sacrum. Neurosurgery. 2013 Oct;73(4):673-80; discussion 680. doi: 10.1227/NEU.0000000000000083.
Zabel-du Bois A, Nikoghosyan A, Schwahofer A, Huber P, Schlegel W, Debus J, Milker-Zabel S. Intensity modulated radiotherapy in the management of sacral chordoma in primary versus recurrent disease. Radiother Oncol. 2010 Dec;97(3):408-12. doi: 10.1016/j.radonc.2010.10.008. Epub 2010 Nov 4.
Henderson FC, McCool K, Seigle J, Jean W, Harter W, Gagnon GJ. Treatment of chordomas with CyberKnife: georgetown university experience and treatment recommendations. Neurosurgery. 2009 Feb;64(2 Suppl):A44-53. doi: 10.1227/01.NEU.0000341166.09107.47.
Royston P, Parmar MK. The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Stat Med. 2011 Aug 30;30(19):2409-21. doi: 10.1002/sim.4274. Epub 2011 May 25.
Stablein DM, Carter WH Jr, Novak JW. Analysis of survival data with nonproportional hazard functions. Control Clin Trials. 1981 Jun;2(2):149-59. doi: 10.1016/0197-2456(81)90005-2.
Li J, Scheike TH, Zhang MJ. Checking Fine and Gray subdistribution hazards model with cumulative sums of residuals. Lifetime Data Anal. 2015 Apr;21(2):197-217. doi: 10.1007/s10985-014-9313-9. Epub 2014 Nov 25.
McCandless LC, Gustafson P, Levy AR, Richardson S. Hierarchical priors for bias parameters in Bayesian sensitivity analysis for unmeasured confounding. Stat Med. 2012 Feb 20;31(4):383-96. doi: 10.1002/sim.4453.
Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995 Dec;48(12):1503-10. doi: 10.1016/0895-4356(95)00048-8.
Yuo TH, Degenholtz HS, Chaer RA, Kraemer KL, Makaroun MS. Effect of hospital-level variation in the use of carotid artery stenting versus carotid endarterectomy on perioperative stroke and death in asymptomatic patients. J Vasc Surg. 2013 Mar;57(3):627-34. doi: 10.1016/j.jvs.2012.09.036. Epub 2013 Jan 9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ISG SACRO
Identifier Type: -
Identifier Source: org_study_id