Aspirin and Renal Disease Progression in Patients With Type 2 Diabetes
NCT ID: NCT02895113
Last Updated: 2016-09-09
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE3
418 participants
INTERVENTIONAL
2017-01-31
2018-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
While there is consolidated evidence about the use of aspirin (ASA) for secondary prevention in diabetic patients, there is no consensus on the use in primary prevention; the use of ASA in these patients is at physician discretion.
ASA is an effective antithrombotic agent that inhibits the production of thromboxane (Tx) A2 and other prostaglandins by blocking cyclooxygenase (COX). In patients treated with aspirin, serum TxB₂ level is the most reliable in vivo indicator of COX-1 inhibition than TxA2, due to its short half-life and artifacts associated with platelet activation ex vivo.
COX are present in the kidney in the macula densa, in the medulla and in the interstitium. Experimental animals models have demonstrated that COX are involved in regulation of renal blood flow. In particular, in a murine animal model, after the administration of COX inhibitors such as aspirin and celecoxib, it was observed an improvement in renal plasma flow and eGFR, suggesting a role for Tx in the progression of renal damage However, data on the relationship between aspirin and renal function in humans are scarce. In a recent work lead on a large cohort of 800 patients with non-valvular atrial fibrillation, ASA use was associated with a reduced progression of eGFR \<45 ml/min during 2 years of follow-up. Furthermore, basal levels of urinary excretion of TxB2, correlated inversely with the use of aspirin and with the decrease of eGFR at follow-up.
The aim of the study is to evaluate the decline in renal function in diabetic patients treated with low-dose aspirin (100 mg/day) vs. untreated diabetic patients.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Aspirin Resistance Reversibility in Diabetic Patients
NCT01935193
Platelet Aggregation in Diabetic Patients With Acute Coronary Syndrome Treated With Different Doses of Aspirin
NCT05293808
Aspirin in the Prevention of Cardiovascular Events in Hemodialysis Patients
NCT01198379
Aspirin Twice Daily in Diabetic Patients With Coronary Artery Disease
NCT01617031
Evaluation of Antiplatelet Effects of Different Dosages of Aspirin in Type 2 Diabetic Patients
NCT00812032
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The pathophysiology of diabetes is multifactorial. Beyond genetic susceptibility loci, a lot of acquired risk factors are involved in the development and progression of the disease. The most important are Impaired Fasting Glucose (IFG) (odds ratio, OR = 11), Impaired Glucose Tolerance (IGT) (OR = 3.9), the weight (overweight: OR = 3.4 and obesity: OR = 9.9), dyslipidemia (OR = 1.6), hypertension (OR = 2.3).
Chronic complications of diabetes can be divided into vascular and nonvascular. The risk of developing complications increases with the duration of hyperglycemia, and usually become apparent in the second decade of hyperglycemia. Vascular complications are further subdivided into microvascular (retinopathy, nephropathy and neuropathy) and macrovascular (coronary artery disease, peripheral arterial disease, cerebrovascular disease). In particular, the worsening of renal function seems to be a peculiar characteristic of the patients suffering from diabetes. It is estimated that the annual decline of estimated glomerular filtration rate (eGFR) in diabetic adults is about 2.1-2.7 ml/min.
Aspirin and Diabetes The efficacy and the safety of acetylsalicylic acid (aspirin, ASA) as an antithrombotic agent has been assessed in different subsets, both in apparently healthy people at low risk of vascular complications (primary prevention), and in high-risk patients, such as those with a previous myocardial infarction or acute ischemic stroke (secondary prevention). Diabetic patients represent an important group in whom treatment with ASA should be carefully considered. The evidence that type 2 diabetic patients taking glucose-lowering agents have similar cardiovascular risk compared to non-diabetic with a previous myocardial infarction, could make reasonable the use of an antiplatelet drug as primary prevention strategy for cardiovascular diseases. However, while there is consolidated evidence about the use of ASA for secondary prevention in diabetic patients, there is no consensus on the use in primary prevention; ASA use in these patients is at physician discretion.
Mechanism of action of aspirin. Aspirin is an effective antithrombotic agent that inhibits, the production of thromboxane (Tx) A2 and other prostaglandins by blocking cyclooxygenase (COX) enzyme. There have been described two isoforms of COX, the COX-1, which is widely expressed and which plays a function of gastric cyto-protection, and COX-2 expressed upon external stimuli and mainly in inflammatory and immune cells. Low-dosage ASA can inhibit COX-1, while at high dosage, ASA can inhibit both COX-1 and COX-2 enzymes.
The antiplatelet action of ASA is via specific inhibition of COX in platelets, through the acetylation of serine-529 of COX-1. This enzyme possesses both cyclooxygenase activity \[converting arachidonate into prostaglandin G2 (PGG2)\] and peroxidase \[converting PGG2 into PGH2, the biochemical precursor of many other prostaglandins and Tx\]. In platelets, this inhibitory effect has as a result, the reduced production of prostaglandins and TxA2, which is a strong platelet agonist. This inhibitory effect is irreversible so that TxA2-mediated platelet aggregation can be restored only through the synthesis of new platelets. Thus, after ASA administration, platelet aggregation is inhibited up to 7 days.
In patients treated with low doses of aspirin, serum TxB₂ level is a most reliable in vivo indicator of COX-1 inhibition than TxA2, due to its short half-life and artifacts associated with platelet activation ex vivo.
Both urinary levels of 11-dehydro-TxB₂ and 2.3-dinor-TxB₂, the most abundant metabolite of TxB₂, have been proven to be platelet activation surrogates. As 11-dehydro-TxB₂ is excreted in higher amounts and has a longer half-life, is the marker of choice.
Thromboxane binds to TP receptor, commonly found on platelets, smooth muscle cells, endothelium and vessels. They exert vasoconstriction function on blood vessels, platelet aggregation and induce the initial stages of coagulation. In particular, Tx is entailed in the reduction of renal blood flow and glomerular filtration rate.
Optimal dosage of aspirin. Randomized placebo-controlled studies have shown that aspirin is effective as an antithrombotic agent at a dosage ranging from 50 to 1500 mg/day; however, long-term clinical efficacy requires daily dosage of 50 up to 100 mg/day.
Patrono et al. assessed a relationship between aspirin dose and TxB2 levels. This study showed that a single dose of 100 mg of drug was able to reduce by 98% the concentration of serum levels of Tx during the first hour. Single doses of 100-400 mg were able to reduce of 94-98% after 24 and 48 hours, with an inhibition rate up to 90-92% at 72 hrs. Serum Tx decreased to normal levels after a period compatible with the platelet half-life. More than 90% of platelet inhibition could be maintained over one month by giving 200 mg of aspirin every 72 hours.
Aspirin, eicosanoids and renal function As previously reported, ASA is able to inhibit Tx production by inhibiting COX; COX are present in the kidney in the macula densa, in the medulla and in the interstitium. In the macula densa this enzyme seems to favour renin production (eg. salt restriction, use of ACE inhibitors, renovascular hypertension).
Experimental animals models have demonstrated that COX are involved in regulation of renal blood flow. In particular, in a murine animal model, after the administration of COX inhibitors such as aspirin and celecoxib, it was observed an improvement in renal plasma flow and eGFR, suggesting a role for Tx in the progression of renal damage.
However, data on the relationship between aspirin and renal function in humans are not available. In a recent work that included a large cohort of 800 patients with non-valvular atrial fibrillation, the use of aspirin was associated with a reduced progression of eGFR \<45 ml/min during 2 years of follow-up. In particular, patients not receiving aspirin had an incidence of GFR \<45 ml/min of 15% vs. 5% of those treated with aspirin 100 mg/day. Furthermore, basal levels of urinary excretion of TxB2, correlated inversely with the use of aspirin and with the decrease of eGFR at follow-up.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Aspirin
Patients will be treated with aspirin 100 mg/day for one year
Aspirin
Patients suffering from type 2 diabetes will be randomized to receive 100 mg/day or placebo for one year
Placebo
Patients will be treated with placebo for one year
Placebo
Patients in this arm will be treated with placebo
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Aspirin
Patients suffering from type 2 diabetes will be randomized to receive 100 mg/day or placebo for one year
Placebo
Patients in this arm will be treated with placebo
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
2. Presence of inadequate glycaemic control (glycosylated haemoglobin ≥8%);
3. Clinical diagnosis of type 1 diabetes (diagnosis of diabetes and insulin use before 35 years of age);
4. Patients with renal impairment in G4 stage (eGFR \<30 ml/min) at baseline;
5. Chronic active infection or evidence of malignancy in the last 5 years;
6. Autoimmune systemic disease;
7. Cardiac arrhythmia;
8. Use of non-steroidal anti-inflammatory drugs, vitamin supplements, or other antiplatelet agents in the previous 30 days;
9. Liver Failure (eg cirrhosis);
10. Use of anticoagulants;
11. Life expectancy \<1 year;
12. Known allergy to aspirin.
18 Years
100 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Roma La Sapienza
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Francesco Violi
Full professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Francesco Violi, MD
Role: PRINCIPAL_INVESTIGATOR
University of Roma La Sapienza
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Internal and Medical Specialities Department - Policlinico Umberto I
Rome, Rome, Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004 May;27(5):1047-53. doi: 10.2337/diacare.27.5.1047.
Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013 Jun 4;158(11):825-30. doi: 10.7326/0003-4819-158-11-201306040-00007.
Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007 Dec 13;357(24):2482-94. doi: 10.1056/NEJMra071014. No abstract available.
Patrono C, Ciabattoni G, Pinca E, Pugliese F, Castrucci G, De Salvo A, Satta MA, Peskar BA. Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res. 1980 Feb 1-15;17(3-4):317-27. doi: 10.1016/0049-3848(80)90066-3. No abstract available.
Lariviere R, Moreau C, Rodrigue ME, Lebel M. Thromboxane blockade reduces blood pressure and progression of renal failure independent of endothelin-1 in uremic rats. Prostaglandins Leukot Essent Fatty Acids. 2004 Aug;71(2):103-9. doi: 10.1016/j.plefa.2003.12.021.
Lomnicka M, Karouni K, Sue M, Wessel LA, Bing RJ. Effects of nonsteroidal anti-inflammatory drugs on prostacyclin and thromboxane in the kidney. Pharmacology. 2003 Jul;68(3):147-53. doi: 10.1159/000070172.
Pastori D, Pignatelli P, Perticone F, Sciacqua A, Carnevale R, Farcomeni A, Basili S, Corazza GR, Davi G, Lip GYH, Violi F; ARAPACIS (Atrial Fibrillation Registry for Ankle-Brachial Index Prevalence Assessment-Collaborative Italian Study) study group. Aspirin and renal insufficiency progression in patients with atrial fibrillation and chronic kidney disease. Int J Cardiol. 2016 Nov 15;223:619-624. doi: 10.1016/j.ijcard.2016.08.224. Epub 2016 Aug 14.
Natale P, Palmer SC, Saglimbene VM, Ruospo M, Razavian M, Craig JC, Jardine MJ, Webster AC, Strippoli GF. Antiplatelet agents for chronic kidney disease. Cochrane Database Syst Rev. 2022 Feb 28;2(2):CD008834. doi: 10.1002/14651858.CD008834.pub4.
Violi F, Targher G, Vestri A, Carnevale R, Averna M, Farcomeni A, Lenzi A, Angelico F, Cipollone F, Pastori D. Effect of aspirin on renal disease progression in patients with type 2 diabetes: A multicenter, double-blind, placebo-controlled, randomized trial. The renaL disEase progression by aspirin in diabetic pAtients (LEDA) trial. Rationale and study design. Am Heart J. 2017 Jul;189:120-127. doi: 10.1016/j.ahj.2017.04.005. Epub 2017 Apr 18.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
LEDA study
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.