Brain During Effort : Effects of Hypoxia With Respiratory Patients
NCT ID: NCT02854280
Last Updated: 2018-03-07
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
33 participants
INTERVENTIONAL
2013-06-30
2018-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Besides the effect of the PaO2, the CBF is also regulated by the PaCO2. During effort in state of hypoxia, the drop of the PaO2 associated to a potential decrease of the PaCO2 and therefore of the CBF, can create an important dizziness between the demand and the supply of cerebral O2.
It seems that hypoxia can trouble in a significant way the response of central neurons, just as the production of a motor cortex generated motor command.
Studies suggest that exercise in severe hypoxia condition can constitute a necessary threat for brain oxygenation and the motor command, with the consequence a decrease of the exercise performance.
This projects aim to study effects of hypoxia on the brain function for patients suffering from chronic respiratory disease. Neurophysiologic responses of the brain while resting or exercising, including drip and cerebral oxygenation, cortical excitation and motor command resulting for hypoxic subjects before and after a treatment to correct abnormalities of gaz in blood.
The study will use a multidisciplinary and supplementary methodological approach : the near-infrared spectroscopy (NIRS) to appreciate the drip and cerebral oxygenation, CBF, neurostimulation procedures and electromyography (EMG) to appreciate the cortical excitability, measure the level of central activation and motor command.
The goals of this study will be :
* Measure the drip and cerebral oxygenation, the cortical excitability, mechanisms of voluntary activation and central fatigue to the effort for the chronic hypoxemic patient compared to healthy control subjects.
* Analyse disruptions of locomotion parameters and posturographyc, in simple and double task, involving different levels of cerebral task.
* Analyse acute effects of an improvement of arterial oxygenation for patients suffering from chronic obstructive pulmonary disease (COPD) on drip and cerebral oxygenation, cortical excitability, mechanisms of voluntary activation and central fatigue.
* Evaluate effects of a treatment by continuous positive airway pressure (CPAP) for patients suffering from obstructive sleep apnea (OSA) with the same parameters.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of Exercise Training on Cognitive Performance and Sympathetic Activity in Obstructive Sleep Apnea
NCT02289625
Effects of Physical Activity on OSA Severity Based on the Level of Fluid Shift
NCT04623463
Testing the Elevation as Sleep Apnea Treatment
NCT02088723
Association Between Cerebral Arterial Vascular Flow and Sleep Apnea in Neurodegenerative Alterations
NCT02578303
Cardiovascular Consequences of Intermittent Hypoxia in Healthy Subjects
NCT00746928
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
BASIC_SCIENCE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Chronic Obstructive Pulmonary Disease (COPD)
18 patients
Pedalling exercise on a cycle ergometer
At 80% of the maximal aerobic power, until exhaustion
Isolated contractions of the quadriceps
Until exhaustion
Sleep Apnea Obstructive (OSA)
18 patients
Pedalling exercise on a cycle ergometer
At 80% of the maximal aerobic power, until exhaustion
Isolated contractions of the quadriceps
Until exhaustion
Healthy Volunteers
36 control patients
Pedalling exercise on a cycle ergometer
At 80% of the maximal aerobic power, until exhaustion
Isolated contractions of the quadriceps
Until exhaustion
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Pedalling exercise on a cycle ergometer
At 80% of the maximal aerobic power, until exhaustion
Isolated contractions of the quadriceps
Until exhaustion
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* stages GOLD III - IV, FEV1/FVC ratio \< 0,7 and maximum voluntary ventilation (MVV) \< 50% of predicted values
* BMI \< 30 kg/m²
* Age between 18 and 80 years
* Non-smoking or ex-smoker (stop since more than 3 months)
* Stable condition since more than 3 months
* PaCO2 \< 45 mmHg resting with ambiant air
* No OSA diagnostic
OSA patients
* Severe OSA recently dignosed (apnoea-Hypopnoea Index (AHI) \> 30)
* Score on Epworth Sleepiness Scale (ESS) \> 10
* Age between 18 and 80 years
* BMI \< 30 kg/m²
Control subjects
* Age between 18 and 80 years
* BMI \< 30 kg/m²
* Non-smoker
* Without any chronic respiratory pathology, cardiovascular, metabolic, renal or neuromuscular, vestibular and/or visual disorder
Exclusion Criteria
* Pathologies cardiovascular, neuromuscular, métabolic, renal
* Alcoholism
* BMI \> 30 kg/m²
* Psychiatric disorders or history of behavioural disorders, vision disorders, vestibular disorders, neurologic disease sensitive to disrupt the postural control and the walking, cognitive disorders
* Instability since less than 3 months
* Counter argument to the application of an external magnetic field
Control subjects
* Respiratory pathologies, cardiovascular, neuromuscular, metabolic, renal
* Alcoholism
* BMI \> 30 kg/m²
* Psychiatric disorders or history of behavioural disorders
* Counter argument to the application of an external magnetic field
18 Years
80 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Grenoble
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Patrick Levy, Professor
Role: PRINCIPAL_INVESTIGATOR
Grenoble Hospital University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
UniversityHospitalGrenoble
La Tronche, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Ainslie PN, Poulin MJ. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide. J Appl Physiol (1985). 2004 Jul;97(1):149-59. doi: 10.1152/japplphysiol.01385.2003. Epub 2004 Mar 5.
Amann M, Romer LM, Subudhi AW, Pegelow DF, Dempsey JA. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. J Physiol. 2007 May 15;581(Pt 1):389-403. doi: 10.1113/jphysiol.2007.129700. Epub 2007 Feb 22.
ASTRAND PO, CUDDY TE, SALTIN B, STENBERG J. CARDIAC OUTPUT DURING SUBMAXIMAL AND MAXIMAL WORK. J Appl Physiol. 1964 Mar;19:268-74. doi: 10.1152/jappl.1964.19.2.268. No abstract available.
Barnes M, Goldsworthy UR, Cary BA, Hill CJ. A diet and exercise program to improve clinical outcomes in patients with obstructive sleep apnea--a feasibility study. J Clin Sleep Med. 2009 Oct 15;5(5):409-15.
Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000 Jan;32(1):70-84. doi: 10.1097/00005768-200001000-00012.
Bedard MA, Montplaisir J, Richer F, Rouleau I, Malo J. Obstructive sleep apnea syndrome: pathogenesis of neuropsychological deficits. J Clin Exp Neuropsychol. 1991 Nov;13(6):950-64. doi: 10.1080/01688639108405110.
Beebe DW, Groesz L, Wells C, Nichols A, McGee K. The neuropsychological effects of obstructive sleep apnea: a meta-analysis of norm-referenced and case-controlled data. Sleep. 2003 May 1;26(3):298-307. doi: 10.1093/sleep/26.3.298.
Bergh U, Ekblom B, Astrand PO. Maximal oxygen uptake "classical" versus "contemporary" viewpoints. Med Sci Sports Exerc. 2000 Jan;32(1):85-8. doi: 10.1097/00005768-200001000-00013.
Bhambhani Y, Malik R, Mookerjee S. Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol. 2007 May 14;156(2):196-202. doi: 10.1016/j.resp.2006.08.009. Epub 2006 Aug 30.
Blomstrand E. Amino acids and central fatigue. Amino Acids. 2001;20(1):25-34. doi: 10.1007/s007260170063.
Brugniaux JV, Hodges AN, Hanly PJ, Poulin MJ. Cerebrovascular responses to altitude. Respir Physiol Neurobiol. 2007 Sep 30;158(2-3):212-23. doi: 10.1016/j.resp.2007.04.008. Epub 2007 May 1.
Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B. Why is VO2 max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol. 2003 Feb;284(2):R304-16. doi: 10.1152/ajpregu.00156.2002. Epub 2002 Oct 3.
Canessa N, Castronovo V, Cappa SF, Aloia MS, Marelli S, Falini A, Alemanno F, Ferini-Strambi L. Obstructive sleep apnea: brain structural changes and neurocognitive function before and after treatment. Am J Respir Crit Care Med. 2011 May 15;183(10):1419-26. doi: 10.1164/rccm.201005-0693OC. Epub 2010 Oct 29.
Cannizzaro G, Garbin L, Clivati A, Pesce LI. Correction of hypoxia and hypercapnia in COPD patients: effects on cerebrovascular flow. Monaldi Arch Chest Dis. 1997 Feb;52(1):9-12.
Celli BR. Predictors of mortality in COPD. Respir Med. 2010 Jun;104(6):773-9. doi: 10.1016/j.rmed.2009.12.017. Epub 2010 Apr 22.
Chaudhuri A, Behan PO. Fatigue and basal ganglia. J Neurol Sci. 2000 Oct 1;179(S 1-2):34-42. doi: 10.1016/s0022-510x(00)00411-1.
Chien MY, Wu YT, Lee PL, Chang YJ, Yang PC. Inspiratory muscle dysfunction in patients with severe obstructive sleep apnoea. Eur Respir J. 2010 Feb;35(2):373-80. doi: 10.1183/09031936.00190208. Epub 2009 Jul 30.
Dalsgaard MK. Fuelling cerebral activity in exercising man. J Cereb Blood Flow Metab. 2006 Jun;26(6):731-50. doi: 10.1038/sj.jcbfm.9600256.
Davis JM, Alderson NL, Welsh RS. Serotonin and central nervous system fatigue: nutritional considerations. Am J Clin Nutr. 2000 Aug;72(2 Suppl):573S-8S. doi: 10.1093/ajcn/72.2.573S.
Foster GE, Hanly PJ, Ostrowski M, Poulin MJ. Effects of continuous positive airway pressure on cerebral vascular response to hypoxia in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2007 Apr 1;175(7):720-5. doi: 10.1164/rccm.200609-1271OC. Epub 2007 Jan 11.
Gonzalez-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, Secher NH. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol. 2004 May 15;557(Pt 1):331-42. doi: 10.1113/jphysiol.2004.060574. Epub 2004 Mar 5.
Goodall S, Ross EZ, Romer LM. Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions. J Appl Physiol (1985). 2010 Dec;109(6):1842-51. doi: 10.1152/japplphysiol.00458.2010. Epub 2010 Sep 2.
Guezennec CY, Abdelmalki A, Serrurier B, Merino D, Bigard X, Berthelot M, Pierard C, Peres M. Effects of prolonged exercise on brain ammonia and amino acids. Int J Sports Med. 1998 Jul;19(5):323-7. doi: 10.1055/s-2007-971925.
Haddad GG, Jiang C. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol. 1993 Mar;40(3):277-318. doi: 10.1016/0301-0082(93)90014-j. No abstract available.
Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985 Jan;65(1):101-48. doi: 10.1152/physrev.1985.65.1.101. No abstract available.
Herman T, Mirelman A, Giladi N, Schweiger A, Hausdorff JM. Executive control deficits as a prodrome to falls in healthy older adults: a prospective study linking thinking, walking, and falling. J Gerontol A Biol Sci Med Sci. 2010 Oct;65(10):1086-92. doi: 10.1093/gerona/glq077. Epub 2010 May 19.
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000 Oct;10(5):361-74. doi: 10.1016/s1050-6411(00)00027-4.
Hopkinson NS, Sharshar T, Ross ET, Nickol AH, Dayer MJ, Porcher R, Jonville S, Moxham J, Polkey MI. Corticospinal control of respiratory muscles in chronic obstructive pulmonary disease. Respir Physiol Neurobiol. 2004 Jul 12;141(1):1-12. doi: 10.1016/j.resp.2004.04.003.
Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol. 2000 Jul;61(4):397-414. doi: 10.1016/s0301-0082(99)00057-x.
Jackson MJ. Molecular mechanisms of muscle damage. Mol Cell Biol Hum Dis Ser. 1993;3:257-82. doi: 10.1007/978-94-011-1528-5_10. No abstract available.
Jensen G, Nielsen HB, Ide K, Madsen PL, Svendsen LB, Svendsen UG, Secher NH. Cerebral oxygenation during exercise in patients with terminal lung disease. Chest. 2002 Aug;122(2):445-50. doi: 10.1378/chest.122.2.445.
Kayser B. Exercise starts and ends in the brain. Eur J Appl Physiol. 2003 Oct;90(3-4):411-9. doi: 10.1007/s00421-003-0902-7. Epub 2003 Jul 19.
Kayser B, Narici M, Binzoni T, Grassi B, Cerretelli P. Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. J Appl Physiol (1985). 1994 Feb;76(2):634-40. doi: 10.1152/jappl.1994.76.2.634.
Kent-Braun JA. Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol Occup Physiol. 1999 Jun;80(1):57-63. doi: 10.1007/s004210050558.
Lal C, Strange C, Bachman D. Neurocognitive impairment in obstructive sleep apnea. Chest. 2012 Jun;141(6):1601-1610. doi: 10.1378/chest.11-2214.
Lee M, Gandevia SC, Carroll TJ. Cortical voluntary activation can be reliably measured in human wrist extensors using transcranial magnetic stimulation. Clin Neurophysiol. 2008 May;119(5):1130-8. doi: 10.1016/j.clinph.2007.12.018. Epub 2008 Mar 4.
Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol (1985). 2002 Apr;92(4):1487-93. doi: 10.1152/japplphysiol.00880.2001.
Levy P, Tamisier R, Minville C, Launois S, Pepin JL. Sleep apnoea syndrome in 2011: current concepts and future directions. Eur Respir Rev. 2011 Sep 1;20(121):134-46. doi: 10.1183/09059180.00003111. No abstract available.
Loeppky JA, Miranda FG, Eldridge MW. Abnormal cerebrovascular responses to CO2 in sleep apnea patients. Sleep. 1984;7(2):97-109. doi: 10.1093/sleep/7.2.97.
Macey PM, Henderson LA, Macey KE, Alger JR, Frysinger RC, Woo MA, Harper RK, Yan-Go FL, Harper RM. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med. 2002 Nov 15;166(10):1382-7. doi: 10.1164/rccm.200201-050OC.
Mayer P, Dematteis M, Pepin JL, Wuyam B, Veale D, Vila A, Levy P. Peripheral neuropathy in sleep apnea. A tissue marker of the severity of nocturnal desaturation. Am J Respir Crit Care Med. 1999 Jan;159(1):213-9. doi: 10.1164/ajrccm.159.1.9709051.
Mazza S, Pepin JL, Naegele B, Plante J, Deschaux C, Levy P. Most obstructive sleep apnoea patients exhibit vigilance and attention deficits on an extended battery of tests. Eur Respir J. 2005 Jan;25(1):75-80. doi: 10.1183/09031936.04.00011204.
Miscio G, Milano E, Aguilar J, Savia G, Foffani G, Mauro A, Mordillo-Mateos L, Romero-Ganuza J, Oliviero A. Functional involvement of central nervous system at high altitude. Exp Brain Res. 2009 Mar;194(1):157-62. doi: 10.1007/s00221-009-1729-1. Epub 2009 Feb 17.
Mohamed-Hussein AA, Hamed SA, Abdel-Hakim N. Cerebral cortical dysfunction in chronic obstructive pulmonary disease: role of transcranial magnetic stimulation. Int J Tuberc Lung Dis. 2007 May;11(5):515-21.
Morrell MJ, Twigg G. Neural consequences of sleep disordered breathing: the role of intermittent hypoxia. Adv Exp Med Biol. 2006;588:75-88. doi: 10.1007/978-0-387-34817-9_8.
Naegele B, Thouvard V, Pepin JL, Levy P, Bonnet C, Perret JE, Pellat J, Feuerstein C. Deficits of cognitive executive functions in patients with sleep apnea syndrome. Sleep. 1995 Jan;18(1):43-52.
Nielsen HB, Boushel R, Madsen P, Secher NH. Cerebral desaturation during exercise reversed by O2 supplementation. Am J Physiol. 1999 Sep;277(3):H1045-52. doi: 10.1152/ajpheart.1999.277.3.H1045.
Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports. 2000 Jun;10(3):123-45. doi: 10.1034/j.1600-0838.2000.010003123.x.
Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol. 2001 Sep;204(Pt 18):3225-34. doi: 10.1242/jeb.204.18.3225.
Nybo L, Moller K, Pedersen BK, Nielsen B, Secher NH. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol Scand. 2003 Sep;179(1):67-74. doi: 10.1046/j.1365-201X.2003.01175.x.
O'Donoghue FJ, Wellard RM, Rochford PD, Dawson A, Barnes M, Ruehland WR, Jackson ML, Howard ME, Pierce RJ, Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment. Sleep. 2012 Jan 1;35(1):41-8. doi: 10.5665/sleep.1582.
Oliviero A, Corbo G, Tonali PA, Pilato F, Saturno E, Dileone M, Versace V, Valente S, Di Lazzaro V. Functional involvement of central nervous system in acute exacerbation of chronic obstructive pulmonary disease A preliminary transcranial magnetic stimulation study. J Neurol. 2002 Sep;249(9):1232-6. doi: 10.1007/s00415-002-0817-y.
Ozaki H, Watanabe S, Suzuki H. Topographic EEG changes due to hypobaric hypoxia at simulated high altitude. Electroencephalogr Clin Neurophysiol. 1995 May;94(5):349-56. doi: 10.1016/0013-4694(94)00311-8.
Papadelis C, Kourtidou-Papadeli C, Bamidis PD, Maglaveras N, Pappas K. The effect of hypobaric hypoxia on multichannel EEG signal complexity. Clin Neurophysiol. 2007 Jan;118(1):31-52. doi: 10.1016/j.clinph.2006.09.008. Epub 2006 Nov 7.
Perrey S. Non-invasive NIR spectroscopy of human brain function during exercise. Methods. 2008 Aug;45(4):289-99. doi: 10.1016/j.ymeth.2008.04.005. Epub 2008 Jun 6.
Rasmussen P, Dawson EA, Nybo L, van Lieshout JJ, Secher NH, Gjedde A. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab. 2007 May;27(5):1082-93. doi: 10.1038/sj.jcbfm.9600416. Epub 2006 Nov 1.
Rasmussen P, Nielsen J, Overgaard M, Krogh-Madsen R, Gjedde A, Secher NH, Petersen NC. Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J Physiol. 2010 Jun 1;588(Pt 11):1985-95. doi: 10.1113/jphysiol.2009.186767. Epub 2010 Apr 19.
Reichmuth KJ, Dopp JM, Barczi SR, Skatrud JB, Wojdyla P, Hayes D Jr, Morgan BJ. Impaired vascular regulation in patients with obstructive sleep apnea: effects of continuous positive airway pressure treatment. Am J Respir Crit Care Med. 2009 Dec 1;180(11):1143-50. doi: 10.1164/rccm.200903-0393OC. Epub 2009 Sep 10.
Remsburg S, Launois SH, Weiss JW. Patients with obstructive sleep apnea have an abnormal peripheral vascular response to hypoxia. J Appl Physiol (1985). 1999 Sep;87(3):1148-53. doi: 10.1152/jappl.1999.87.3.1148.
Ries AL. Pulmonary rehabilitation: summary of an evidence-based guideline. Respir Care. 2008 Sep;53(9):1203-7.
Rupp T, Perrey S. Effect of severe hypoxia on prefrontal cortex and muscle oxygenation responses at rest and during exhaustive exercise. Adv Exp Med Biol. 2009;645:329-34. doi: 10.1007/978-0-387-85998-9_49.
Sassoon CS, Gruer SE, Sieck GC. Temporal relationships of ventilatory failure, pump failure, and diaphragm fatigue. J Appl Physiol (1985). 1996 Jul;81(1):238-45. doi: 10.1152/jappl.1996.81.1.238.
Sidhu SK, Bentley DJ, Carroll TJ. Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol (1985). 2009 Feb;106(2):556-65. doi: 10.1152/japplphysiol.90911.2008. Epub 2008 Dec 4.
Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol (1985). 2007 Jul;103(1):177-83. doi: 10.1152/japplphysiol.01460.2006. Epub 2007 Apr 12.
Subudhi AW, Lorenz MC, Fulco CS, Roach RC. Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance. Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H164-71. doi: 10.1152/ajpheart.01104.2007. Epub 2007 Nov 21.
Szubski C, Burtscher M, Loscher WN. The effects of short-term hypoxia on motor cortex excitability and neuromuscular activation. J Appl Physiol (1985). 2006 Dec;101(6):1673-7. doi: 10.1152/japplphysiol.00617.2006. Epub 2006 Aug 10.
Szubski C, Burtscher M, Loscher WN. Neuromuscular fatigue during sustained contractions performed in short-term hypoxia. Med Sci Sports Exerc. 2007 Jun;39(6):948-54. doi: 10.1249/mss.0b013e3180479918.
Taylor JL, Allen GM, Butler JE, Gandevia SC. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol (1985). 2000 Jul;89(1):305-13. doi: 10.1152/jappl.2000.89.1.305.
Teppema LJ, Dahan A. The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev. 2010 Apr;90(2):675-754. doi: 10.1152/physrev.00012.2009.
Tuunanen PI, Kauppinen RA. Effects of oxygen saturation on BOLD and arterial spin labelling perfusion fMRI signals studied in a motor activation task. Neuroimage. 2006 Mar;30(1):102-9. doi: 10.1016/j.neuroimage.2005.09.021. Epub 2005 Oct 21.
Van de Ven MJ, Colier WN, Van der Sluijs MC, Kersten BT, Oeseburg B, Folgering H. Ventilatory and cerebrovascular responses in normocapnic and hypercapnic COPD patients. Eur Respir J. 2001 Jul;18(1):61-8. doi: 10.1183/09031936.01.00087501.
van de Ven MJ, Colier WN, van der Sluijs MC, Oeseburg B, Vis P, Folgering H. Effects of acetazolamide and furosemide on ventilation and cerebral blood volume in normocapnic and hypercapnic patients with COPD. Chest. 2002 Feb;121(2):383-92. doi: 10.1378/chest.121.2.383.
Verges S, Maffiuletti NA, Kerherve H, Decorte N, Wuyam B, Millet GY. Comparison of electrical and magnetic stimulations to assess quadriceps muscle function. J Appl Physiol (1985). 2009 Feb;106(2):701-10. doi: 10.1152/japplphysiol.01051.2007. Epub 2008 Aug 28.
Vivodtzev I, Flore P, Levy P, Wuyam B. Voluntary activation during knee extensions in severely deconditioned patients with chronic obstructive pulmonary disease: benefit of endurance training. Muscle Nerve. 2008 Jan;37(1):27-35. doi: 10.1002/mus.20867.
Volianitis S, Fabricius-Bjerre A, Overgaard A, Stromstad M, Bjarrum M, Carlson C, Petersen NT, Rasmussen P, Secher NH, Nielsen HB. The cerebral metabolic ratio is not affected by oxygen availability during maximal exercise in humans. J Physiol. 2008 Jan 1;586(1):107-12. doi: 10.1113/jphysiol.2007.142273. Epub 2007 Oct 11.
Wagner PD. Reduced maximal cardiac output at altitude--mechanisms and significance. Respir Physiol. 2000 Mar;120(1):1-11. doi: 10.1016/s0034-5687(99)00101-2.
Westerblad H, Allen DG, Bruton JD, Andrade FH, Lannergren J. Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiol Scand. 1998 Mar;162(3):253-60. doi: 10.1046/j.1365-201X.1998.0301f.x.
Woollacott M, Shumway-Cook A. Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture. 2002 Aug;16(1):1-14. doi: 10.1016/s0966-6362(01)00156-4.
Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008 Feb 15;23(3):329-42; quiz 472. doi: 10.1002/mds.21720.
Marillier M, Gruet M, Baillieul S, Wuyam B, Tamisier R, Levy P, Pepin JL, Verges S. Impaired cerebral oxygenation and exercise tolerance in patients with severe obstructive sleep apnea syndrome. Sleep Med. 2018 Nov;51:37-46. doi: 10.1016/j.sleep.2018.06.013. Epub 2018 Jul 4.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
38RC12.212
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.