Mesenchymal Stem Cells Therapy for Treatment of Airway Remodeling in Mustard Patients
NCT ID: NCT02749448
Last Updated: 2016-07-25
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE1
10 participants
INTERVENTIONAL
2015-02-28
2017-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Methods: Patients will receive 100 million MSC cells every two months for three injections within 6 months. After each injection, parameters including safety, pulmonary function testing (PFT), quality-of-life indicators, 6 minute walk test (6MWT), and expression of inflammation and oxidative stress genes will be evaluated.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Safety and Feasibility Study of Administration of Mesenchymal Stemcells for Treatment of Emphysema
NCT01306513
Mesenchymal Stem Cells (MSCs) for Treatment of Acute Respiratory Distress Syndrome (ARD) in Patients With Malignancies
NCT02804945
Treatment of Laryngotracheal Stenosis Using Mesenchymal Stem Cells
NCT05535803
Human Umbilical-Cord-Derived Mesenchymal Stem Cell Therapy in Acute Lung Injury
NCT02444455
Adipose-derived Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome
NCT01902082
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In this clinical trial, investigators considered therapeutic effect of MSCs in SM-exposed male patients.Patients, had a documented encounter with SM during the Iran-Iraq war. The patients signed informed consent before study. They were selected according to the following criteria: (a) the severity of lung injury was ranged from moderate 50\< forced expiratory volume in 1 second (FEV1) \<65 to severe 40\<FEV1\<50; (b) absence of contraindications spirometry (hemoptysis, cerebral arterial aneurysm or aortic, pulmonary embolism, uncontrolled blood pressure, recent pneumothorax, no doubt surgery/thoracic recent, recent stroke); and (c) no coagulation. The exclusion criteria for the selection process were as follow: (a) participate in another study at the same time; (b) smoking habitat; (c) the existence of pneumonia during the study; (d) the incidence of transfusion reaction; (e) underlying other diseases (cardiovascular disease, hypertension, diabetes).
Isolation and culture of adipose derived stem cells:
200mL of abdominal adipose tissue was obtained under local anesthesia by liposuction aspirates protocol. The lipoaspirate was washed with PBS to remove tissue debris. 100mL PBS containing 0.1% w/v collagenase A type I was added to isolated tissue and then incubated at 37ºC for 60 minutes. Collagenase activity was neutralized using MEM medium along with 10% fetal bovine serum. Cell pellets were resuspended in culture medium after centrifugation at 2000rpm for 10 min, and then transferred to culture flasks for 72 h at 37ºC in 5% CO2 condition. The culture medium in the flasks was changed every 3 days, and cells were passaged for two times.
Flow cytometry analysis:
To analyze the cell surface antigen expression, 5×105 fresh cells from third passage were harvested by trypsin-EDTA. Cells were centrifuged at 100 g for 1 min, resuspended in stain buffer (PBS, 2% FBS) and then incubated on ice for 10 minutes. Trypsin was neutralized by centrifuge and isolated cells were washed twice with PBS and finally resuspended in stain buffer. Cells were incubated in dark environment for 30 minutes. After incubation, the cells were labeled with anti-human monoclonal antibodies (MAbs) conjugated to fluorochromes. These antibodies were as follow: anti-CD90-fluorescein isothiocyanate (FITC), CD73-phycoerythrin (PE), CD11b-FITC, CD34-FITC, CD44-FITC, CD45-PE, CD105-PE. The frequencies of all immunolabeled cells were analyzed by FACS Canto II flow cytometer, in which approximately 500,000 events were assessed and data were analyzed using FlowJo software (version 10.0).
Karyotype analysis for abnormalities detection:
Standard Giemsa staining procedure was performed and chromosome preparations were obtained from 80% confluent cells. To stop microtubule formation, the cells were treated with Colcemid solution. The mitotic arrested cells were then harvested using trypsin-EDTA. The cells were extracted and then immersed in 75 mmol/l KCl for 30 minute at laboratory temperature. Finally, they obtained by a centrifugation. The supernatant was replaced with fixative solution and the suspension was spread over slides for microscopic examination and imaging. At least, 15 metaphase spreads were analyzed. The karyotypes were considered with light microscope using a cytovision software.
Freezing and Storage of Adipose-derived Stem Cells:
ADMSCs were harvested at 90% confluence before injection for freezing. To collect cells, culture medium was removed and replaced with sterile PBS and after three minutes it was replaced with trypsin-EDTA solution and then incubated at 37°C for 5 minutes. Complete medium (MEM with 10% FBS) was added to inactivate the trypsin, and centrifuged at 1500 rpm for 5 minutes. Cell pellet was resuspended in cryopreservation medium (80% FBS, 10% dimethylsulfoxide and 10% MEM medium) with a final concentration of 5 million cells per milliliter and aliquoted into cryovials. The vials stored at -80 °C overnight and then transferred into a liquid nitrogen container for long-term storage.
MSCs injection and Study plan:
Patients received 100×106 cells every 20 day for four injections within 2 months and screened for 7 times. MSCs were injected intravenously along with 300 ml normal saline to the patient at a maximum rate of 2×106 cells/min. Each infusion took approximately 30 minute to be completed. After each injection, patient stayed at hospital for at least 6h as recovery time. Efficacy of MSCs treatment in these patients were evaluated using the following parameters: pulmonary functions test (PFTs) \[forced expiratory volume in 1 second (FEV1), Forced vital capacity (FVC), FEV1/FVC\], total lung capacity by body plethysmography, single-breath carbon monoxide diffusing capacity (CO diffusion) , exercise performance \[6-minute walk test (6MWT)\], Borg scale dyspnea assessment (BSDA), COPD Assessment Test (CAT), St. George's Respiratory Questionnaire (SRGQ) and comprehensive safety evaluation.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
mesenchymal stem cell
There are complex sets of non-hematopoietic cells in bone marrow called mesenchymal progenitor cells (MPCs). MSCs are well-known as multipotent cells that have the ability to self-renew and differentiate into a great variety of cells. MSCs can be isolated from bone marrow, umbilical cord, peripheral blood and adipose tissue, and cultured in specific media. MSC colony formation, which is known as marrow-like stromal cells and MPCs, is similar to fibroblast colony forming unit (CFU-F) in in vitro condition. According to the International Society for Cellular Therapy (ISCT), MSCs can be easily detected or identified from other cells using flow cytometric analysis to detect specific surface markers
mesenchymal stem cell
There are complex sets of non-hematopoietic cells in bone marrow called mesenchymal progenitor cells (MPCs). MSCs are well-known as multipotent cells that have the ability to self-renew and differentiate into a great variety of cells. MSCs can be isolated from bone marrow, umbilical cord, peripheral blood and adipose tissue, and cultured in specific media. MSC colony formation, which is known as marrow-like stromal cells and MPCs, is similar to fibroblast colony forming unit (CFU-F) in in vitro condition. According to the International Society for Cellular Therapy (ISCT), MSCs can be easily detected or identified from other cells using flow cytometric analysis to detect specific surface markers
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
mesenchymal stem cell
There are complex sets of non-hematopoietic cells in bone marrow called mesenchymal progenitor cells (MPCs). MSCs are well-known as multipotent cells that have the ability to self-renew and differentiate into a great variety of cells. MSCs can be isolated from bone marrow, umbilical cord, peripheral blood and adipose tissue, and cultured in specific media. MSC colony formation, which is known as marrow-like stromal cells and MPCs, is similar to fibroblast colony forming unit (CFU-F) in in vitro condition. According to the International Society for Cellular Therapy (ISCT), MSCs can be easily detected or identified from other cells using flow cytometric analysis to detect specific surface markers
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* their disease severity were as following based on spirometric: moderate 50\<forced expiratory volume at one second (FEV1)\<65 or severe 40\<FEV1\<50
* absence of contraindications spirometry (recent myocardial ischemia (MI)
* hemoptysis
* cerebral arterial aneurysm or aortic
* pulmonary embolism,
* uncontrolled blood pressure
* recent pneumothorax
* no doubt surgery/recent thoracic
* recent eye surgery, recent stroke
* non-availability in another research study at a same time
* no coagulation disorders
Exclusion Criteria
* the incidence of pneumonia during the study
* the incidence of transfusion reaction
* other medical condition (cardiovascular disease, hypertension, diabetes)
* visiting less than 2 times
45 Years
65 Years
MALE
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Dr. Mostafa Ghanei
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Dr. Mostafa Ghanei
pulmonologist doctor
References
Explore related publications, articles, or registry entries linked to this study.
Marzouni ET, Dorcheh SP, Nejad-Moghaddam A, Ghanei M, Goodarzi H, Hosseini SE, Madani H. Adipose-derived mesenchymal stem cells ameliorate lung epithelial injury through mitigating of oxidative stress in mustard lung. Regen Med. 2020 Sep 16. doi: 10.2217/rme-2020-0051. Online ahead of print.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
IRCT2015110524890N1
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.