The Alfred Step Test Exercise Protocol (A-STEP), for Adults With Cystic Fibrosis.
NCT ID: NCT02717650
Last Updated: 2025-08-11
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
7 participants
INTERVENTIONAL
2016-08-25
2024-03-04
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Lower exercise capacity generally correlates with more severe lung disease (2,3) and landmark studies suggest that low exercise capacity as measured by peak oxygen capacity (VO2peak) and rate of decline in lung function (FEV1) are strong predictors of mortality (1,4). However not all studies have found pulmonary function tests (PFTs) to be reliable predictors of maximal exercise capacity (5), especially in relatively well preserved lung function (6,7).
The wide distribution in physical capacity between fit individuals and end stage disease adds to complexity of assessment. Independent factors of age, genetics, habitual exercise, nutritional status and musculoskeletal conditions are all known to influence physical capacity in patients with CF (8,9).
Maximal exercise testing places additional stress on cardiovascular, respiratory and peripheral systems providing more information around multiple influences on disease progression including degree of limitation in these major systems (10,11) and is useful for assessment of exercise desaturation, more common (but not always present) in advanced lung disease (5,12).
With prediction of exercise performance and functional capacity from PFTs unreliable and the understanding that health status correlates better with exercise tolerance there has been an increase in maximal exercise testing for patient management (13). Many international centers now regard exercise testing as highly important with many assessing maximal exercise capacity annually to monitor disease progression, identify physical status and drive changes in medical, physiotherapy or nutritional management (14,15).
The main vision is to develop a standardized incremental step test protocol suitable for adults with Cystic Fibrosis (CF), all ages, levels of fitness and disease state that is in line with current exercise testing recommendations (15). To develop a more useful field test to assess exercise tolerance and a more "user friendly" test than the currently available laboratory exercise test to allow for early detection of decline in physical function in the day-to-day clinical setting. To date no studies have been published in adults with CF where an incremental exercise step test has been investigated to assess exercise tolerance or determine maximum oxygen uptake (VO2max).
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Use of A-STEP Test in Cystic Fibrosis Patients
NCT05809492
A CFit Study - Acute Exercise
NCT03237767
The iStep Study: Development and Validation of an Incremental Exercise Step Test for Children With Cystic Fibrosis
NCT02199340
STeP IT UP CF: STimulating ImProved Health And Well-being In CysTic Fibrosis
NCT04018495
Feasibility of Home-based Exercise Program for Adults With Cystic Fibrosis
NCT05239611
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Cardiopulmonary Exercise Testing (CPET):
The current best practice for assessing VO2max in adults with CF is a CPET using the Godfrey Protocol, a progressive and incremental maximal test performed on a cycle ergometer (13,14,15). Exercise testing should aim to achieve a maximal response within a time frame of 8-12 min and incremental protocols with stage duration of 1 minute are considered more efficient in eliciting the desired response within this time frame (14). During CPET, VO2max is determined while breath-by-breath gas analysis allows for a comprehensive assessment of exercise ventilation and circulation. This information can identify reasons for low exercise capacity and whether exercise limitation is due to deconditioning, or primarily within the respiratory, cardiovascular or peripheral systems. CPET is performed using a specialist ergometer, and requires specialist clinical expertise, monitoring and reporting equipment for interpretation of the test. The cost, space and expertise to carry out CPET in CF units around the world may limit its use for the regular assessment of exercise capacity in adults with CF (16).
Field Tests:
Field tests generally cannot determine absolute maximal exercise capacity, but do provide valuable information about the patient's functional abilities and limitations and compared to laboratory tests are inexpensive and easy to administer.
Field tests that use a single step for assessment of exercise tolerance in patients with chronic lung disease include:
3-Minute Step Test (3MST):
The 3MST is a feasible and acceptable measure of sub-maximal exercise performance in children and adults and a useful tool in the assessment of oxygen desaturation (17,18). The test is short in duration, simple to carry out, and has low cost and minimal space and equipment requirements however the sub-maximal nature and ceiling effect of the 3MST limits its usefulness clinically across the age spectrum (18,19).
The Chester Step Test (CST):
The CST is a 10-minute sub-maximal standardized multistage test and like the 3MST has minimal space and equipment requirements. The CST was originally designed for workplace screening and is now widely used for exercise prescription in the UK cardiac population (20). In healthy individuals one study reported a ceiling effect and a positive relationship between predicted VO2max using the CST and measured VO2max (21) however a subsequent study questioned this prediction validity (22). The CST has been found to be highly reproducible in patients with chronic obstructive lung disease (COPD) and reliable in patients with Bronchiectasis, but too challenging for both groups (23,24).
The Modified Incremental Step Test (MIST):
The MIST was designed to be more suitable for COPD patients and modeled from the CST(25). A reduction in work rate was not found to result in a difference in cardiopulmonary stress and exertion effort at peak exercise but did result in a higher exercise tolerance in patients with COPD. The MIST is reliable and better tolerated than the CST in patients with Bronchiectasis (23,24).
The CST and CF:
One study (published in abstract form) has shown the CST to be a useful field test when compared to the 3MST and 6MWT for those with mild to moderate CF. The authors commented this was likely due to the progressive nature being more representative of adult physical activity (26).
The main vision is to develop a standardized incremental step test protocol suitable for adults with Cystic Fibrosis (CF), all ages, levels of fitness and disease state that is in line with current exercise testing recommendations (15). The test should be a more useful than the already available field tests and more "user friendly" test than the currently available laboratory exercise test to assess exercise tolerance and allow for early detection of decline in physical function in the day-to-day clinical setting. To date no studies have been published in adults with CF where an incremental exercise step test has been investigated to assess exercise tolerance or determine VO2max.
1. To design a standardized externally paced incremental step test that is portable, easy to administer, simple to perform, time, cost and space efficient (A-STEP).
Study A:
2. To assess feasibility and reliability of the A-STEP to objectively assess exercise tolerance.
3. To determine if the A-STEP is a more useful tool than the 3-Minute Step Test.
Study B:
4. To develop an alternative tool to determine maximum oxygen uptake (VO2max) to the "gold standard" CPET that is feasible across the whole spectrum of lung disease.
5. To determine if the A-STEPmax is a valid tool when compared to the VO2max achieved from a CPET performed on a cycle ergometer using the Godfrey Protocol.
The principle investigator hypothesizes that the A-STEP will be a feasible tool to assess exercise capacity; and the A-STEP max will be a valid tool for the assessment of VO2max across the age range and disease spectrum in adults with CF.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
BASIC_SCIENCE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
A-STEP
Study A) A-STEP Study Development of new exercise test protocol and Observational Feasibility/Safety Study (no comparator).
A-STEP
Study A) Study A) Development of new exercise test protocol and Observational Feasibility/Safety Study (no comparator).
Feasibility/safety of a newly designed, incremental, maximal, standardised step test in adults with Cystic Fibrosis.
A-STEP (New Protocol)
Study B) A-STEPmax Study Validity Study (random allocation of test order).
A-STEP (New Protocol)
Study B) Validation Study (random allocation of test order). Validity of an incremental, maximal, standardised incremental step test with breath-by-breath gas analysis using portable metabolic measurement equipment against CPET.
CPET cycle ergometer (Gold Standard)
Study B) A-STEPmax Study Validity Study (random allocation of test order).
Comparator: CPET cycle ergometer (Gold Standard)
Study B) Validation study (random allocation of test order) "Gold standard" CPET. An incremental, maximal standardised cycle ergometer exercise test (performed as per published protocol) using portable metabolic measurement equipment.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
A-STEP
Study A) Study A) Development of new exercise test protocol and Observational Feasibility/Safety Study (no comparator).
Feasibility/safety of a newly designed, incremental, maximal, standardised step test in adults with Cystic Fibrosis.
A-STEP (New Protocol)
Study B) Validation Study (random allocation of test order). Validity of an incremental, maximal, standardised incremental step test with breath-by-breath gas analysis using portable metabolic measurement equipment against CPET.
Comparator: CPET cycle ergometer (Gold Standard)
Study B) Validation study (random allocation of test order) "Gold standard" CPET. An incremental, maximal standardised cycle ergometer exercise test (performed as per published protocol) using portable metabolic measurement equipment.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Aged 18yrs and older
* FEV1 ≥20% (Forced expiration in 1 sec)
* Stable baseline state. (Stable baseline state is defined as: clinically stable respiratory status, for at least 30 days, characterized by the absence of hospitalization and no changes in maintenance therapy during this period (Yankaskas et al 2004)).
EXCLUSION
* Febrile
* Haemoptysis
* Uncontrolled asthma
* Pneumothorax
* Cardiac issues
* Unreliable readings on pulse oximetry
* Pulmonary hypertension
* Unstable CF related diabetes (CFRD)
* Vascular issues
* Renal disease
* Pregnancy
* Body mass index (BMI) \<18.0
* Significant musculoskeletal issues
* Unable to safely follow instructions
(ATS/ACCP 2003; Hebestreit 2015)
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Monash University
OTHER
The Alfred
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Lisa Wilson
Senior Physiotherapist
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Lisa M Wilson, BHS(Physio)
Role: PRINCIPAL_INVESTIGATOR
Alfred Hospital; Monash University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The Alfred Hospital
Melbourne, Victoria, Australia
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF. The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med. 1992 Dec 17;327(25):1785-8. doi: 10.1056/NEJM199212173272504.
Godfrey S, Mearns M. Pulmonary function and response to exercise in cystic fibrosis. Arch Dis Child. 1971 Apr;46(246):144-51. doi: 10.1136/adc.46.246.144.
Marcotte JE, Grisdale RK, Levison H, Coates AL, Canny GJ. Multiple factors limit exercise capacity in cystic fibrosis. Pediatr Pulmonol. 1986 Sep-Oct;2(5):274-81. doi: 10.1002/ppul.1950020505.
Pianosi P, Leblanc J, Almudevar A. Peak oxygen uptake and mortality in children with cystic fibrosis. Thorax. 2005 Jan;60(1):50-4. doi: 10.1136/thx.2003.008102.
Henke KG, Orenstein DM. Oxygen saturation during exercise in cystic fibrosis. Am Rev Respir Dis. 1984 May;129(5):708-11. doi: 10.1164/arrd.1984.129.5.708.
Moorcroft AJ, Dodd ME, Webb AK. Exercise testing and prognosis in adult cystic fibrosis. Thorax. 1997 Mar;52(3):291-3. doi: 10.1136/thx.52.3.291.
Shah AR, Gozal D, Keens TG. Determinants of aerobic and anaerobic exercise performance in cystic fibrosis. Am J Respir Crit Care Med. 1998 Apr;157(4 Pt 1):1145-50. doi: 10.1164/ajrccm.157.4.9705023.
Lands LC, Heigenhauser GJ, Jones NL. Respiratory and peripheral muscle function in cystic fibrosis. Am Rev Respir Dis. 1993 Apr;147(4):865-9. doi: 10.1164/ajrccm/147.4.865.
Nixon PA, Orenstein DM, Kelsey SF. Habitual physical activity in children and adolescents with cystic fibrosis. Med Sci Sports Exerc. 2001 Jan;33(1):30-5. doi: 10.1097/00005768-200101000-00006.
Barry SC, Gallagher CG. Corticosteroids and skeletal muscle function in cystic fibrosis. J Appl Physiol (1985). 2003 Oct;95(4):1379-84. doi: 10.1152/japplphysiol.00506.2002. Epub 2003 Jun 13.
Urquhart DS. Exercise testing in cystic fibrosis: why (and how)? J R Soc Med. 2011 Jul;104 Suppl 1(Suppl 1):S6-14. doi: 10.1258/jrsm.2011.s11102. No abstract available.
Rogers D, Prasad SA, Doull I. Exercise testing in children with cystic fibrosis. J R Soc Med. 2003;96 Suppl 43(Suppl 43):23-9. No abstract available.
American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003 Jan 15;167(2):211-77. doi: 10.1164/rccm.167.2.211. No abstract available.
Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010 Jul 13;122(2):191-225. doi: 10.1161/CIR.0b013e3181e52e69. Epub 2010 Jun 28. No abstract available.
Hebestreit H, Arets HGM, Aurora P, Boas S, Cerny F, Hulzebos EHJ, Karila C, Lands LC, Lowman JD, Swisher A, Urquhart DS; European Cystic Fibrosis Exercise Working Group. Statement on Exercise Testing in Cystic Fibrosis. Respiration. 2015;90(4):332-351. doi: 10.1159/000439057. Epub 2015 Sep 9.
Stevens D, Oades PJ, Armstrong N, Williams CA. A survey of exercise testing and training in UK cystic fibrosis clinics. J Cyst Fibros. 2010 Sep;9(5):302-6. doi: 10.1016/j.jcf.2010.03.004. Epub 2010 Mar 31.
Balfour-Lynn IM, Prasad SA, Laverty A, Whitehead BF, Dinwiddie R. A step in the right direction: assessing exercise tolerance in cystic fibrosis. Pediatr Pulmonol. 1998 Apr;25(4):278-84. doi: 10.1002/(sici)1099-0496(199804)25:43.0.co;2-g.
Holland AE, Rasekaba T, Wilson JW, Button BM. Desaturation during the 3-minute step test predicts impaired 12-month outcomes in adult patients with cystic fibrosis. Respir Care. 2011 Aug;56(8):1137-42. doi: 10.4187/respcare.01016. Epub 2011 Apr 15.
Narang I, Pike S, Rosenthal M, Balfour-Lynn IM, Bush A. Three-minute step test to assess exercise capacity in children with cystic fibrosis with mild lung disease. Pediatr Pulmonol. 2003 Feb;35(2):108-13. doi: 10.1002/ppul.10213.
Andrade CH, Cianci RG, Malaguti C, Corso SD. The use of step tests for the assessment of exercise capacity in healthy subjects and in patients with chronic lung disease. J Bras Pneumol. 2012 Jan-Feb;38(1):116-24. doi: 10.1590/s1806-37132012000100016. English, Portuguese.
Sykes, K., Roberts, A. . (2004). The Chester step test-a simple yet effective tool for the prediction of aerobic capacity. Physiotherapy Theory & Practice, 90(4 ), 183-188 doi: DOI: 10.1016/j.physio.2004.03.008)
Buckley JP, Sim J, Eston RG, Hession R, Fox R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br J Sports Med. 2004 Apr;38(2):197-205. doi: 10.1136/bjsm.2003.005389.
de Camargo AA, Justino T, de Andrade CH, Malaguti C, Dal Corso S. Chester step test in patients with COPD: reliability and correlation with pulmonary function test results. Respir Care. 2011 Jul;56(7):995-1001. doi: 10.4187/respcare.01047.
Camargo AA, Lanza FC, Tupinamba T, Corso SD. Reproducibility of step tests in patients with bronchiectasis. Braz J Phys Ther. 2013 May-Jun;17(3):255-62. doi: 10.1590/s1413-35552012005000089.
de Andrade CH, de Camargo AA, de Castro BP, Malaguti C, Dal Corso S. Comparison of cardiopulmonary responses during 2 incremental step tests in subjects with COPD. Respir Care. 2012 Nov;57(11):1920-6. doi: 10.4187/respcare.01742. Epub 2012 Jun 15.
Planner, S., Morrison, L., Campbell, J., Bicknell, S., Ross, E. (2007). The Chester Step Test-Is this a Valid Predictor of Disease Severity in Adult CF? . Paper presented at the 2007 Cystic Fibrosis Conference.
Wilson LM, Ellis MJ, Lane RL, Wilson JW, Keating DT, Jaberzadeh S, Button BM. Development of the A-STEP: A new incremental maximal exercise capacity step test in cystic fibrosis. Pediatr Pulmonol. 2021 Dec;56(12):3777-3784. doi: 10.1002/ppul.25667. Epub 2021 Sep 17.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
205/16
Identifier Type: OTHER
Identifier Source: secondary_id
0267
Identifier Type: OTHER
Identifier Source: secondary_id
205/16
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.