The Alfred Step Test Exercise Protocol (A-STEP), for Adults With Cystic Fibrosis.

NCT ID: NCT02717650

Last Updated: 2025-08-11

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

7 participants

Study Classification

INTERVENTIONAL

Study Start Date

2016-08-25

Study Completion Date

2024-03-04

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Exercise testing has become clinically important in the management and ongoing evaluation of patients with Cystic Fibrosis (CF) with higher rates of exercise tolerance and participation previously linked to lower mortality risk (1).

Lower exercise capacity generally correlates with more severe lung disease (2,3) and landmark studies suggest that low exercise capacity as measured by peak oxygen capacity (VO2peak) and rate of decline in lung function (FEV1) are strong predictors of mortality (1,4). However not all studies have found pulmonary function tests (PFTs) to be reliable predictors of maximal exercise capacity (5), especially in relatively well preserved lung function (6,7).

The wide distribution in physical capacity between fit individuals and end stage disease adds to complexity of assessment. Independent factors of age, genetics, habitual exercise, nutritional status and musculoskeletal conditions are all known to influence physical capacity in patients with CF (8,9).

Maximal exercise testing places additional stress on cardiovascular, respiratory and peripheral systems providing more information around multiple influences on disease progression including degree of limitation in these major systems (10,11) and is useful for assessment of exercise desaturation, more common (but not always present) in advanced lung disease (5,12).

With prediction of exercise performance and functional capacity from PFTs unreliable and the understanding that health status correlates better with exercise tolerance there has been an increase in maximal exercise testing for patient management (13). Many international centers now regard exercise testing as highly important with many assessing maximal exercise capacity annually to monitor disease progression, identify physical status and drive changes in medical, physiotherapy or nutritional management (14,15).

The main vision is to develop a standardized incremental step test protocol suitable for adults with Cystic Fibrosis (CF), all ages, levels of fitness and disease state that is in line with current exercise testing recommendations (15). To develop a more useful field test to assess exercise tolerance and a more "user friendly" test than the currently available laboratory exercise test to allow for early detection of decline in physical function in the day-to-day clinical setting. To date no studies have been published in adults with CF where an incremental exercise step test has been investigated to assess exercise tolerance or determine maximum oxygen uptake (VO2max).

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Many international centers now regard exercise testing as highly important with many measuring maximal exercise capacity annually to monitor disease progression, identify physical status and to drive changes in medical, physiotherapy or nutritional management (14,15).

Cardiopulmonary Exercise Testing (CPET):

The current best practice for assessing VO2max in adults with CF is a CPET using the Godfrey Protocol, a progressive and incremental maximal test performed on a cycle ergometer (13,14,15). Exercise testing should aim to achieve a maximal response within a time frame of 8-12 min and incremental protocols with stage duration of 1 minute are considered more efficient in eliciting the desired response within this time frame (14). During CPET, VO2max is determined while breath-by-breath gas analysis allows for a comprehensive assessment of exercise ventilation and circulation. This information can identify reasons for low exercise capacity and whether exercise limitation is due to deconditioning, or primarily within the respiratory, cardiovascular or peripheral systems. CPET is performed using a specialist ergometer, and requires specialist clinical expertise, monitoring and reporting equipment for interpretation of the test. The cost, space and expertise to carry out CPET in CF units around the world may limit its use for the regular assessment of exercise capacity in adults with CF (16).

Field Tests:

Field tests generally cannot determine absolute maximal exercise capacity, but do provide valuable information about the patient's functional abilities and limitations and compared to laboratory tests are inexpensive and easy to administer.

Field tests that use a single step for assessment of exercise tolerance in patients with chronic lung disease include:

3-Minute Step Test (3MST):

The 3MST is a feasible and acceptable measure of sub-maximal exercise performance in children and adults and a useful tool in the assessment of oxygen desaturation (17,18). The test is short in duration, simple to carry out, and has low cost and minimal space and equipment requirements however the sub-maximal nature and ceiling effect of the 3MST limits its usefulness clinically across the age spectrum (18,19).

The Chester Step Test (CST):

The CST is a 10-minute sub-maximal standardized multistage test and like the 3MST has minimal space and equipment requirements. The CST was originally designed for workplace screening and is now widely used for exercise prescription in the UK cardiac population (20). In healthy individuals one study reported a ceiling effect and a positive relationship between predicted VO2max using the CST and measured VO2max (21) however a subsequent study questioned this prediction validity (22). The CST has been found to be highly reproducible in patients with chronic obstructive lung disease (COPD) and reliable in patients with Bronchiectasis, but too challenging for both groups (23,24).

The Modified Incremental Step Test (MIST):

The MIST was designed to be more suitable for COPD patients and modeled from the CST(25). A reduction in work rate was not found to result in a difference in cardiopulmonary stress and exertion effort at peak exercise but did result in a higher exercise tolerance in patients with COPD. The MIST is reliable and better tolerated than the CST in patients with Bronchiectasis (23,24).

The CST and CF:

One study (published in abstract form) has shown the CST to be a useful field test when compared to the 3MST and 6MWT for those with mild to moderate CF. The authors commented this was likely due to the progressive nature being more representative of adult physical activity (26).

The main vision is to develop a standardized incremental step test protocol suitable for adults with Cystic Fibrosis (CF), all ages, levels of fitness and disease state that is in line with current exercise testing recommendations (15). The test should be a more useful than the already available field tests and more "user friendly" test than the currently available laboratory exercise test to assess exercise tolerance and allow for early detection of decline in physical function in the day-to-day clinical setting. To date no studies have been published in adults with CF where an incremental exercise step test has been investigated to assess exercise tolerance or determine VO2max.

1. To design a standardized externally paced incremental step test that is portable, easy to administer, simple to perform, time, cost and space efficient (A-STEP).

Study A:
2. To assess feasibility and reliability of the A-STEP to objectively assess exercise tolerance.
3. To determine if the A-STEP is a more useful tool than the 3-Minute Step Test.

Study B:
4. To develop an alternative tool to determine maximum oxygen uptake (VO2max) to the "gold standard" CPET that is feasible across the whole spectrum of lung disease.
5. To determine if the A-STEPmax is a valid tool when compared to the VO2max achieved from a CPET performed on a cycle ergometer using the Godfrey Protocol.

The principle investigator hypothesizes that the A-STEP will be a feasible tool to assess exercise capacity; and the A-STEP max will be a valid tool for the assessment of VO2max across the age range and disease spectrum in adults with CF.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cystic Fibrosis Fibrosis Lung Diseases Respiratory Diseases Genetic Diseases Pancreatic Diseases

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

CROSSOVER

Primary Study Purpose

BASIC_SCIENCE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

A-STEP

Study A) A-STEP Study Development of new exercise test protocol and Observational Feasibility/Safety Study (no comparator).

Group Type EXPERIMENTAL

A-STEP

Intervention Type OTHER

Study A) Study A) Development of new exercise test protocol and Observational Feasibility/Safety Study (no comparator).

Feasibility/safety of a newly designed, incremental, maximal, standardised step test in adults with Cystic Fibrosis.

A-STEP (New Protocol)

Study B) A-STEPmax Study Validity Study (random allocation of test order).

Group Type EXPERIMENTAL

A-STEP (New Protocol)

Intervention Type OTHER

Study B) Validation Study (random allocation of test order). Validity of an incremental, maximal, standardised incremental step test with breath-by-breath gas analysis using portable metabolic measurement equipment against CPET.

CPET cycle ergometer (Gold Standard)

Study B) A-STEPmax Study Validity Study (random allocation of test order).

Group Type ACTIVE_COMPARATOR

Comparator: CPET cycle ergometer (Gold Standard)

Intervention Type OTHER

Study B) Validation study (random allocation of test order) "Gold standard" CPET. An incremental, maximal standardised cycle ergometer exercise test (performed as per published protocol) using portable metabolic measurement equipment.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

A-STEP

Study A) Study A) Development of new exercise test protocol and Observational Feasibility/Safety Study (no comparator).

Feasibility/safety of a newly designed, incremental, maximal, standardised step test in adults with Cystic Fibrosis.

Intervention Type OTHER

A-STEP (New Protocol)

Study B) Validation Study (random allocation of test order). Validity of an incremental, maximal, standardised incremental step test with breath-by-breath gas analysis using portable metabolic measurement equipment against CPET.

Intervention Type OTHER

Comparator: CPET cycle ergometer (Gold Standard)

Study B) Validation study (random allocation of test order) "Gold standard" CPET. An incremental, maximal standardised cycle ergometer exercise test (performed as per published protocol) using portable metabolic measurement equipment.

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Alfred Step Test Exercise Protocol (A-STEP) Alfred Step Test Exercise Protocol Cardiopulmonary Exercise Test Protocol

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Confirmed Diagnosis of CF (by genotype or positive sweat test)
* Aged 18yrs and older
* FEV1 ≥20% (Forced expiration in 1 sec)
* Stable baseline state. (Stable baseline state is defined as: clinically stable respiratory status, for at least 30 days, characterized by the absence of hospitalization and no changes in maintenance therapy during this period (Yankaskas et al 2004)).

EXCLUSION

* Febrile
* Haemoptysis
* Uncontrolled asthma
* Pneumothorax
* Cardiac issues
* Unreliable readings on pulse oximetry
* Pulmonary hypertension
* Unstable CF related diabetes (CFRD)
* Vascular issues
* Renal disease
* Pregnancy
* Body mass index (BMI) \<18.0
* Significant musculoskeletal issues
* Unable to safely follow instructions

(ATS/ACCP 2003; Hebestreit 2015)
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Monash University

OTHER

Sponsor Role collaborator

The Alfred

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Lisa Wilson

Senior Physiotherapist

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Lisa M Wilson, BHS(Physio)

Role: PRINCIPAL_INVESTIGATOR

Alfred Hospital; Monash University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

The Alfred Hospital

Melbourne, Victoria, Australia

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Australia

References

Explore related publications, articles, or registry entries linked to this study.

Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF. The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med. 1992 Dec 17;327(25):1785-8. doi: 10.1056/NEJM199212173272504.

Reference Type BACKGROUND
PMID: 1435933 (View on PubMed)

Godfrey S, Mearns M. Pulmonary function and response to exercise in cystic fibrosis. Arch Dis Child. 1971 Apr;46(246):144-51. doi: 10.1136/adc.46.246.144.

Reference Type BACKGROUND
PMID: 5576246 (View on PubMed)

Marcotte JE, Grisdale RK, Levison H, Coates AL, Canny GJ. Multiple factors limit exercise capacity in cystic fibrosis. Pediatr Pulmonol. 1986 Sep-Oct;2(5):274-81. doi: 10.1002/ppul.1950020505.

Reference Type BACKGROUND
PMID: 3774384 (View on PubMed)

Pianosi P, Leblanc J, Almudevar A. Peak oxygen uptake and mortality in children with cystic fibrosis. Thorax. 2005 Jan;60(1):50-4. doi: 10.1136/thx.2003.008102.

Reference Type BACKGROUND
PMID: 15618583 (View on PubMed)

Henke KG, Orenstein DM. Oxygen saturation during exercise in cystic fibrosis. Am Rev Respir Dis. 1984 May;129(5):708-11. doi: 10.1164/arrd.1984.129.5.708.

Reference Type BACKGROUND
PMID: 6426354 (View on PubMed)

Moorcroft AJ, Dodd ME, Webb AK. Exercise testing and prognosis in adult cystic fibrosis. Thorax. 1997 Mar;52(3):291-3. doi: 10.1136/thx.52.3.291.

Reference Type BACKGROUND
PMID: 9093351 (View on PubMed)

Shah AR, Gozal D, Keens TG. Determinants of aerobic and anaerobic exercise performance in cystic fibrosis. Am J Respir Crit Care Med. 1998 Apr;157(4 Pt 1):1145-50. doi: 10.1164/ajrccm.157.4.9705023.

Reference Type BACKGROUND
PMID: 9563732 (View on PubMed)

Lands LC, Heigenhauser GJ, Jones NL. Respiratory and peripheral muscle function in cystic fibrosis. Am Rev Respir Dis. 1993 Apr;147(4):865-9. doi: 10.1164/ajrccm/147.4.865.

Reference Type BACKGROUND
PMID: 8466121 (View on PubMed)

Nixon PA, Orenstein DM, Kelsey SF. Habitual physical activity in children and adolescents with cystic fibrosis. Med Sci Sports Exerc. 2001 Jan;33(1):30-5. doi: 10.1097/00005768-200101000-00006.

Reference Type BACKGROUND
PMID: 11194108 (View on PubMed)

Barry SC, Gallagher CG. Corticosteroids and skeletal muscle function in cystic fibrosis. J Appl Physiol (1985). 2003 Oct;95(4):1379-84. doi: 10.1152/japplphysiol.00506.2002. Epub 2003 Jun 13.

Reference Type BACKGROUND
PMID: 12807896 (View on PubMed)

Urquhart DS. Exercise testing in cystic fibrosis: why (and how)? J R Soc Med. 2011 Jul;104 Suppl 1(Suppl 1):S6-14. doi: 10.1258/jrsm.2011.s11102. No abstract available.

Reference Type BACKGROUND
PMID: 21719895 (View on PubMed)

Rogers D, Prasad SA, Doull I. Exercise testing in children with cystic fibrosis. J R Soc Med. 2003;96 Suppl 43(Suppl 43):23-9. No abstract available.

Reference Type BACKGROUND
PMID: 12906322 (View on PubMed)

American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003 Jan 15;167(2):211-77. doi: 10.1164/rccm.167.2.211. No abstract available.

Reference Type BACKGROUND
PMID: 12524257 (View on PubMed)

Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010 Jul 13;122(2):191-225. doi: 10.1161/CIR.0b013e3181e52e69. Epub 2010 Jun 28. No abstract available.

Reference Type BACKGROUND
PMID: 20585013 (View on PubMed)

Hebestreit H, Arets HGM, Aurora P, Boas S, Cerny F, Hulzebos EHJ, Karila C, Lands LC, Lowman JD, Swisher A, Urquhart DS; European Cystic Fibrosis Exercise Working Group. Statement on Exercise Testing in Cystic Fibrosis. Respiration. 2015;90(4):332-351. doi: 10.1159/000439057. Epub 2015 Sep 9.

Reference Type BACKGROUND
PMID: 26352941 (View on PubMed)

Stevens D, Oades PJ, Armstrong N, Williams CA. A survey of exercise testing and training in UK cystic fibrosis clinics. J Cyst Fibros. 2010 Sep;9(5):302-6. doi: 10.1016/j.jcf.2010.03.004. Epub 2010 Mar 31.

Reference Type BACKGROUND
PMID: 20359963 (View on PubMed)

Balfour-Lynn IM, Prasad SA, Laverty A, Whitehead BF, Dinwiddie R. A step in the right direction: assessing exercise tolerance in cystic fibrosis. Pediatr Pulmonol. 1998 Apr;25(4):278-84. doi: 10.1002/(sici)1099-0496(199804)25:43.0.co;2-g.

Reference Type BACKGROUND
PMID: 9590488 (View on PubMed)

Holland AE, Rasekaba T, Wilson JW, Button BM. Desaturation during the 3-minute step test predicts impaired 12-month outcomes in adult patients with cystic fibrosis. Respir Care. 2011 Aug;56(8):1137-42. doi: 10.4187/respcare.01016. Epub 2011 Apr 15.

Reference Type BACKGROUND
PMID: 21496365 (View on PubMed)

Narang I, Pike S, Rosenthal M, Balfour-Lynn IM, Bush A. Three-minute step test to assess exercise capacity in children with cystic fibrosis with mild lung disease. Pediatr Pulmonol. 2003 Feb;35(2):108-13. doi: 10.1002/ppul.10213.

Reference Type BACKGROUND
PMID: 12526071 (View on PubMed)

Andrade CH, Cianci RG, Malaguti C, Corso SD. The use of step tests for the assessment of exercise capacity in healthy subjects and in patients with chronic lung disease. J Bras Pneumol. 2012 Jan-Feb;38(1):116-24. doi: 10.1590/s1806-37132012000100016. English, Portuguese.

Reference Type BACKGROUND
PMID: 22407048 (View on PubMed)

Sykes, K., Roberts, A. . (2004). The Chester step test-a simple yet effective tool for the prediction of aerobic capacity. Physiotherapy Theory & Practice, 90(4 ), 183-188 doi: DOI: 10.1016/j.physio.2004.03.008)

Reference Type BACKGROUND

Buckley JP, Sim J, Eston RG, Hession R, Fox R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br J Sports Med. 2004 Apr;38(2):197-205. doi: 10.1136/bjsm.2003.005389.

Reference Type BACKGROUND
PMID: 15039259 (View on PubMed)

de Camargo AA, Justino T, de Andrade CH, Malaguti C, Dal Corso S. Chester step test in patients with COPD: reliability and correlation with pulmonary function test results. Respir Care. 2011 Jul;56(7):995-1001. doi: 10.4187/respcare.01047.

Reference Type BACKGROUND
PMID: 21740727 (View on PubMed)

Camargo AA, Lanza FC, Tupinamba T, Corso SD. Reproducibility of step tests in patients with bronchiectasis. Braz J Phys Ther. 2013 May-Jun;17(3):255-62. doi: 10.1590/s1413-35552012005000089.

Reference Type BACKGROUND
PMID: 23966142 (View on PubMed)

de Andrade CH, de Camargo AA, de Castro BP, Malaguti C, Dal Corso S. Comparison of cardiopulmonary responses during 2 incremental step tests in subjects with COPD. Respir Care. 2012 Nov;57(11):1920-6. doi: 10.4187/respcare.01742. Epub 2012 Jun 15.

Reference Type BACKGROUND
PMID: 22709990 (View on PubMed)

Planner, S., Morrison, L., Campbell, J., Bicknell, S., Ross, E. (2007). The Chester Step Test-Is this a Valid Predictor of Disease Severity in Adult CF? . Paper presented at the 2007 Cystic Fibrosis Conference.

Reference Type BACKGROUND

Wilson LM, Ellis MJ, Lane RL, Wilson JW, Keating DT, Jaberzadeh S, Button BM. Development of the A-STEP: A new incremental maximal exercise capacity step test in cystic fibrosis. Pediatr Pulmonol. 2021 Dec;56(12):3777-3784. doi: 10.1002/ppul.25667. Epub 2021 Sep 17.

Reference Type BACKGROUND
PMID: 34499432 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

205/16

Identifier Type: OTHER

Identifier Source: secondary_id

0267

Identifier Type: OTHER

Identifier Source: secondary_id

205/16

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

A CFit Study - Baseline
NCT03234387 TERMINATED