Efficacy and Safety of Medication Used to Stimulate Ovulation
NCT ID: NCT02715336
Last Updated: 2020-07-20
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE4
666 participants
INTERVENTIONAL
2015-10-31
2021-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The use of GnRH agonist (GnRHa) triggering among high responders in order to reduce or eliminate OHSS is an example of an important breakthrough in the clinical management of IVF patients. Although GnRHa triggering was shown to be as effective as human chorionic gonadotropin (hCG) at inducing oocyte maturation more than 20 years ago, its use to trigger ovulation was not possible until the introduction of GnRH antagonists for pituitary suppression.
Another prominent trend in ART in recent years has been the introduction of dual triggering, which involves a combination of GnRHa plus hCG for triggering. This regimen creates simultaneous lutenizing hormone (LH) and follicle stimulating hormone (FSH) surges by the GnRHa, which resembles physiologic ovulation triggering, together with sustained LH-like activity from the hCG, which stimulates the corpus luteum to excrete sufficient hormonal endometrial support. Since its introduction, dual triggering has been gaining popularity due to outstanding results in retrospective studies among both normal and high responders. Moreover, in spite of the encouraging retrospective reports, prospective randomized controlled trials (RCT) on dual triggering have not been reported to date. The aim of the current proposed study is to compare the efficacy of dual triggering and conventional triggering among the three IVF populations (high, normal and poor responders).
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Supplementation With Human Chorionic Gonadotropin (hCG) During Controlled Ovarian Stimulation With Recombinant Follicle-stimulating Hormone (FSH) for In Vitro Fertilisation
NCT00844311
Co Administration of GnRH Agonist and hCG for Final Oocyte Maturation
NCT02703584
Luteal Phase Support With GnRH Agonist After GnRH Agonist Triggering in IVF/ICSI Cycles
NCT06150703
Comapring Luteal Phase Support in IVF Patients Who Are at High Risk for Developing OHSS
NCT02827656
Gonadotropin-releasing Hormone (GnRH) Antagonist During 3 Days
NCT01093443
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
1. Dual triggering with 1000 units hCG vs. GnRH agonist alone in high responder IVF patients and in ovum donors.
2. Dual triggering vs. 5000 units hCG in normal responders
3. Dual triggering vs. 10000 units hCG in poor responders
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Study group: High Responders
1000 units hCG
Ovulation induction with hCG and Lupron (GnRH agonist)
Patients treated for infertility are categorized as a low-, normal- or high responder according to their estimated ovarian response to hormonal stimulation. This classification dictates the hormonal stimulation regimen that they will receive. In contrast to hCG triggering, GnRHa triggering is characterized by simultaneous LH and FSH surges, similar to natural ovulation. A combination of GnRHa plus hCG for triggering creates simultaneous LH and FSH surges by the GnRHa, which resembles physiologic ovulation triggering, together with sustained LH-like activity from the hCG, stimulating the corpus luteum to excrete sufficient hormonal endometrial support.
Control group: High Responders
1000 units hCG
No interventions assigned to this group
Study group: Normal Responders
5000 units hCG
Ovulation induction with hCG and Lupron (GnRH agonist)
Patients treated for infertility are categorized as a low-, normal- or high responder according to their estimated ovarian response to hormonal stimulation. This classification dictates the hormonal stimulation regimen that they will receive. In contrast to hCG triggering, GnRHa triggering is characterized by simultaneous LH and FSH surges, similar to natural ovulation. A combination of GnRHa plus hCG for triggering creates simultaneous LH and FSH surges by the GnRHa, which resembles physiologic ovulation triggering, together with sustained LH-like activity from the hCG, stimulating the corpus luteum to excrete sufficient hormonal endometrial support.
Control group: Normal Responders
5000 units hCG
No interventions assigned to this group
Study group: Low Responders
10000 units hCG
Ovulation induction with hCG and Lupron (GnRH agonist)
Patients treated for infertility are categorized as a low-, normal- or high responder according to their estimated ovarian response to hormonal stimulation. This classification dictates the hormonal stimulation regimen that they will receive. In contrast to hCG triggering, GnRHa triggering is characterized by simultaneous LH and FSH surges, similar to natural ovulation. A combination of GnRHa plus hCG for triggering creates simultaneous LH and FSH surges by the GnRHa, which resembles physiologic ovulation triggering, together with sustained LH-like activity from the hCG, stimulating the corpus luteum to excrete sufficient hormonal endometrial support.
Control group: Low Responders
10000 units hCG
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Ovulation induction with hCG and Lupron (GnRH agonist)
Patients treated for infertility are categorized as a low-, normal- or high responder according to their estimated ovarian response to hormonal stimulation. This classification dictates the hormonal stimulation regimen that they will receive. In contrast to hCG triggering, GnRHa triggering is characterized by simultaneous LH and FSH surges, similar to natural ovulation. A combination of GnRHa plus hCG for triggering creates simultaneous LH and FSH surges by the GnRHa, which resembles physiologic ovulation triggering, together with sustained LH-like activity from the hCG, stimulating the corpus luteum to excrete sufficient hormonal endometrial support.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* AFC \> 16
* PCOS diagnosed according to Rotterdam criteria: any two of the following three features: 1) oligo- or anovulation; 2) clinical and/or biochemical hyper-androgenemia; and 3) PCO-US with exclusion of other etiologies as mentioned in the National Institute of Child Health and Human Development (NICHD) criteria
* Previous OHSS
* Previous cycle cancellation due to OHSS risk
* Previous coasting
* informed consent obtained
* Must be 18 years or older
* Ability to speak and read English, or understand French, Mandarin, Cantonese, Arabic, or Filipino.
* Age above 18 years and less than 40 years
* Do not fulfill criteria for poor responder or high responder
* Age \> 40 or other risk factor for decreased ovarian reserve (ex. ovarian surgery).
* Single abnormal test for ovarian reserve (AFC \< 6 or AMH \< 8 pmol/L).
* Previous poor response in previous cycle: cancellation or \< 4 retrieved oocytes in response to daily 150 FSH units.
Exclusion Criteria
* Hypogonadotrophic hypogonadism
* Untreated uterine abnormalities
* E2\>4000 pg/ml (\>14,680 pmol/L) on trigger day. These very high risk patients will undergo GnRHa only trigger and will be excluded from the trial.
B) Dual triggering vs. 5000 units hCG in normal responders
* Bologna criteria for poor responders exclusion: two of the following should need to be fulfilled:
1. Age \> 40 or other risk factor for decreased ovarian reserve (ex. ovarian surgery)
2. Single abnormal test for ovarian reserve (AFC \< 6 or AMH \< 8 pmol/L)
3. Previous poor response in previous cycle: cancellation or \< 4 retrieved oocytes in response to daily 150 FSH units
* Criteria for high responders' exclusion
1. AMH \> 29 pmol/L
2. AFC \> 16
3. PCOS diagnosed according to Rotterdam criteria \[19, 28\]: any two of the following three features: 1) oligo- or anovulation; 2) clinical and/or biochemical hyper-androgenemia; and 3) PCO-US with exclusion of other etiologies as mentioned in the NICHD criteria
4. Previous OHSS
5. Previous cycle cancellation due to OHSS risk
6. Previous coasting
7. Excessive ovarian response markers on triggering day such as high amount of middle-large follicles (\> 13 follicles ≥ 11mm on triggering day) and E2 concentration (optional E2 \> 14500 pmol/L on triggering day). These patients will be allocated to the high responders group.
* Untreated uterine abnormalities
* Chronic disease
C) Dual Triggering for Poor Responders
* Chronic disease
* Untreated uterine abnormalities
* Response consistent with normal or high responder, as defined above
18 Years
45 Years
FEMALE
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Create Fertility Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Clifford Librach, MD
Role: PRINCIPAL_INVESTIGATOR
University of Toronto
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Create Fertility Centre
Toronto, Ontario, Canada
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Deborah Davies, RN
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Tremellen K, Savulescu J. Ovarian reserve screening: a scientific and ethical analysis. Hum Reprod. 2014 Dec;29(12):2606-14. doi: 10.1093/humrep/deu265. Epub 2014 Oct 21.
Sills ES, Alper MM, Walsh AP. Ovarian reserve screening in infertility: practical applications and theoretical directions for research. Eur J Obstet Gynecol Reprod Biol. 2009 Sep;146(1):30-6. doi: 10.1016/j.ejogrb.2009.05.008. Epub 2009 May 31.
Garcia JE, Jones GS, Acosta AA, Wright G Jr. Human menopausal gonadotropin/human chorionic gonadotropin follicular maturation for oocyte aspiration: phase I, 1981. Fertil Steril. 1983 Feb;39(2):167-73. doi: 10.1016/s0015-0282(16)46814-7.
Ferraretti AP, La Marca A, Fauser BC, Tarlatzis B, Nargund G, Gianaroli L; ESHRE working group on Poor Ovarian Response Definition. ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011 Jul;26(7):1616-24. doi: 10.1093/humrep/der092. Epub 2011 Apr 19.
Tarlatzis BC, Zepiridis L, Grimbizis G, Bontis J. Clinical management of low ovarian response to stimulation for IVF: a systematic review. Hum Reprod Update. 2003 Jan-Feb;9(1):61-76. doi: 10.1093/humupd/dmg007.
Lainas TG, Sfontouris IA, Papanikolaou EG, Zorzovilis JZ, Petsas GK, Lainas GT, Kolibianakis EM. Flexible GnRH antagonist versus flare-up GnRH agonist protocol in poor responders treated by IVF: a randomized controlled trial. Hum Reprod. 2008 Jun;23(6):1355-8. doi: 10.1093/humrep/den107. Epub 2008 Apr 10.
Datta AK, Eapen A, Birch H, Kurinchi-Selvan A, Lockwood G. Retrospective comparison of GnRH agonist trigger with HCG trigger in GnRH antagonist cycles in anticipated high-responders. Reprod Biomed Online. 2014 Nov;29(5):552-8. doi: 10.1016/j.rbmo.2014.08.006. Epub 2014 Aug 28.
Huber M, Hadziosmanovic N, Berglund L, Holte J. Using the ovarian sensitivity index to define poor, normal, and high response after controlled ovarian hyperstimulation in the long gonadotropin-releasing hormone-agonist protocol: suggestions for a new principle to solve an old problem. Fertil Steril. 2013 Nov;100(5):1270-6. doi: 10.1016/j.fertnstert.2013.06.049. Epub 2013 Aug 6.
Broekmans FJ, Verweij PJ, Eijkemans MJ, Mannaerts BM, Witjes H. Prognostic models for high and low ovarian responses in controlled ovarian stimulation using a GnRH antagonist protocol. Hum Reprod. 2014 Aug;29(8):1688-97. doi: 10.1093/humrep/deu090. Epub 2014 Jun 5.
Klein JU, Sauer MV. Ethics in egg donation: past, present, and future. Semin Reprod Med. 2010 Jul;28(4):322-8. doi: 10.1055/s-0030-1255180. Epub 2010 Aug 3.
Prapas Y, Panagiotidis I, Kalogiannidis I, Gjata E, Papatheodorou A, Prapa S, Kasapi L, Goudakou M, Prapas N. Double GnRH-antagonist dose before HCG administration may prevent OHSS in oocyte-donor cycles: a pilot study. Reprod Biomed Online. 2010 Aug;21(2):159-65. doi: 10.1016/j.rbmo.2010.04.030. Epub 2010 Jun 2.
Melo M, Busso CE, Bellver J, Alama P, Garrido N, Meseguer M, Pellicer A, Remohi J. GnRH agonist versus recombinant HCG in an oocyte donation programme: a randomized, prospective, controlled, assessor-blind study. Reprod Biomed Online. 2009 Oct;19(4):486-92. doi: 10.1016/j.rbmo.2009.06.001.
Gonen Y, Balakier H, Powell W, Casper RF. Use of gonadotropin-releasing hormone agonist to trigger follicular maturation for in vitro fertilization. J Clin Endocrinol Metab. 1990 Oct;71(4):918-22. doi: 10.1210/jcem-71-4-918.
Humaidan P, Polyzos NP. Human chorionic gonadotropin vs. gonadotropin-releasing hormone agonist trigger in assisted reproductive technology--"the king is dead, long live the king!". Fertil Steril. 2014 Aug;102(2):339-41. doi: 10.1016/j.fertnstert.2014.04.047. Epub 2014 Jun 4. No abstract available.
Fauser BC, de Jong D, Olivennes F, Wramsby H, Tay C, Itskovitz-Eldor J, van Hooren HG. Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization. J Clin Endocrinol Metab. 2002 Feb;87(2):709-15. doi: 10.1210/jcem.87.2.8197.
Humaidan P, Bredkjaer HE, Bungum L, Bungum M, Grondahl ML, Westergaard L, Andersen CY. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod. 2005 May;20(5):1213-20. doi: 10.1093/humrep/deh765. Epub 2005 Mar 10.
Kolibianakis EM, Schultze-Mosgau A, Schroer A, van Steirteghem A, Devroey P, Diedrich K, Griesinger G. A lower ongoing pregnancy rate can be expected when GnRH agonist is used for triggering final oocyte maturation instead of HCG in patients undergoing IVF with GnRH antagonists. Hum Reprod. 2005 Oct;20(10):2887-92. doi: 10.1093/humrep/dei150. Epub 2005 Jun 24.
Humaidan P, Kol S, Papanikolaou EG; Copenhagen GnRH Agonist Triggering Workshop Group. GnRH agonist for triggering of final oocyte maturation: time for a change of practice? Hum Reprod Update. 2011 Jul-Aug;17(4):510-24. doi: 10.1093/humupd/dmr008. Epub 2011 Mar 30.
Engmann L, DiLuigi A, Schmidt D, Nulsen J, Maier D, Benadiva C. The use of gonadotropin-releasing hormone (GnRH) agonist to induce oocyte maturation after cotreatment with GnRH antagonist in high-risk patients undergoing in vitro fertilization prevents the risk of ovarian hyperstimulation syndrome: a prospective randomized controlled study. Fertil Steril. 2008 Jan;89(1):84-91. doi: 10.1016/j.fertnstert.2007.02.002. Epub 2007 Apr 26.
Acevedo B, Gomez-Palomares JL, Ricciarelli E, Hernandez ER. Triggering ovulation with gonadotropin-releasing hormone agonists does not compromise embryo implantation rates. Fertil Steril. 2006 Dec;86(6):1682-7. doi: 10.1016/j.fertnstert.2006.05.049. Epub 2006 Oct 30.
Blazquez A, Guillen JJ, Colome C, Coll O, Vassena R, Vernaeve V. Empty follicle syndrome prevalence and management in oocyte donors. Hum Reprod. 2014 Oct 10;29(10):2221-7. doi: 10.1093/humrep/deu203. Epub 2014 Aug 1.
Bodri D, Guillen JJ, Trullenque M, Schwenn K, Esteve C, Coll O. Early ovarian hyperstimulation syndrome is completely prevented by gonadotropin releasing-hormone agonist triggering in high-risk oocyte donor cycles: a prospective, luteal-phase follow-up study. Fertil Steril. 2010 May 1;93(7):2418-20. doi: 10.1016/j.fertnstert.2009.08.036. Epub 2009 Oct 2.
Humaidan P, Polyzos NP, Alsbjerg B, Erb K, Mikkelsen AL, Elbaek HO, Papanikolaou EG, Andersen CY. GnRHa trigger and individualized luteal phase hCG support according to ovarian response to stimulation: two prospective randomized controlled multi-centre studies in IVF patients. Hum Reprod. 2013 Sep;28(9):2511-21. doi: 10.1093/humrep/det249. Epub 2013 Jun 9.
Griffin D, Benadiva C, Kummer N, Budinetz T, Nulsen J, Engmann L. Dual trigger of oocyte maturation with gonadotropin-releasing hormone agonist and low-dose human chorionic gonadotropin to optimize live birth rates in high responders. Fertil Steril. 2012 Jun;97(6):1316-20. doi: 10.1016/j.fertnstert.2012.03.015. Epub 2012 Apr 3.
Lin MH, Wu FS, Lee RK, Li SH, Lin SY, Hwu YM. Dual trigger with combination of gonadotropin-releasing hormone agonist and human chorionic gonadotropin significantly improves the live-birth rate for normal responders in GnRH-antagonist cycles. Fertil Steril. 2013 Nov;100(5):1296-302. doi: 10.1016/j.fertnstert.2013.07.1976. Epub 2013 Aug 28.
Griffin D, Feinn R, Engmann L, Nulsen J, Budinetz T, Benadiva C. Dual trigger with gonadotropin-releasing hormone agonist and standard dose human chorionic gonadotropin to improve oocyte maturity rates. Fertil Steril. 2014 Aug;102(2):405-9. doi: 10.1016/j.fertnstert.2014.04.028. Epub 2014 May 17.
Haas J, Zilberberg E, Dar S, Kedem A, Machtinger R, Orvieto R. Co-administration of GnRH-agonist and hCG for final oocyte maturation (double trigger) in patients with low number of oocytes retrieved per number of preovulatory follicles--a preliminary report. J Ovarian Res. 2014 Aug 2;7:77. doi: 10.1186/1757-2215-7-77.
Nastri CO, Teixeira DM, Moroni RM, Leitao VM, Martins WP. Ovarian hyperstimulation syndrome: pathophysiology, staging, prediction and prevention. Ultrasound Obstet Gynecol. 2015 Apr;45(4):377-93. doi: 10.1002/uog.14684. Epub 2015 Mar 1.
Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004 Jan;81(1):19-25. doi: 10.1016/j.fertnstert.2003.10.004.
Papanikolaou EG, Humaidan P, Polyzos NP, Tarlatzis B. Identification of the high-risk patient for ovarian hyperstimulation syndrome. Semin Reprod Med. 2010 Nov;28(6):458-62. doi: 10.1055/s-0030-1265671. Epub 2010 Nov 16.
Seyhan A, Ata B, Polat M, Son WY, Yarali H, Dahan MH. Severe early ovarian hyperstimulation syndrome following GnRH agonist trigger with the addition of 1500 IU hCG. Hum Reprod. 2013 Sep;28(9):2522-8. doi: 10.1093/humrep/det124. Epub 2013 Apr 30.
Sunkara SK, Coomarasamy A, Faris R, Braude P, Khalaf Y. Long gonadotropin-releasing hormone agonist versus short agonist versus antagonist regimens in poor responders undergoing in vitro fertilization: a randomized controlled trial. Fertil Steril. 2014 Jan;101(1):147-53. doi: 10.1016/j.fertnstert.2013.09.035. Epub 2013 Nov 1.
Zivi E, Simon A, Laufer N. Ovarian hyperstimulation syndrome: definition, incidence, and classification. Semin Reprod Med. 2010 Nov;28(6):441-7. doi: 10.1055/s-0030-1265669. Epub 2010 Nov 16.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CFC-01
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.