Retrospective Evaluation of Melanocortin Receptor 4 Polymorphisms in Patients With GBM Treated With Radiochemotherapy

NCT ID: NCT02458508

Last Updated: 2017-10-25

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

65 participants

Study Classification

OBSERVATIONAL

Study Start Date

2015-03-31

Study Completion Date

2017-03-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Glioblastoma (GBM) accounts for approximately 50% of all glioma and among these tumors, are the most malignant. The cells of origin of glioma are still undefined, but the most putative target cells include astrocytes, neural stem cells, and oligodendrocyte precursor cells. The current standard of care for patients with newly diagnosed GBM includes temozolomide and radiotherapy . Melanocortins are peptides with well-recognized anti-inflammatory and neuroprotective activity. Of the five known melanocortin receptors (MCRs), only subtype 4 is present in astrocytes and it is expressed predominantly in the brain. No data are currently available on MC4R gene polymorphisms and gliomas or their relationship with radiotherapy or chemotherapy.

Aim. Given the association of MC4R with antiinflammatory activity, neuroprotection, induction of neural stem/progenitor cell proliferation in brain hypoxia, and prevention of astrocyte apoptosis, the aim of this study is to retrospectively evaluate the possible prognostic/predictive role of the MC4R SNPs on GBM therapy.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Glioma is the most frequent malignant primary brain tumor and remains a lethal disease with a dismal prognosis. Glioblastoma (GBM) accounts approximately 50% of all glioma and among these tumors, are the most malignant. GBM are characterized by a higher cellular density and by the ample existence of atypia, mitotic cells, pseudopalisading necrosis and microvascular proliferations. The cells of origin of glioma are still undefined, but the most putative target cells include astrocytes, neural stem cells, and oligodendrocyte precursor cells. Despite therapeutic advances recorded over the last decade, treatment of GBM remains difficult and nowadays no available treatments have a curative attempt. Therefore, the treatment of patients with malignant gliomas still remains palliative. The current standard of care for patients with newly diagnosed GBM was established in 2005 by Stupp et al following the pivotal trial by the European Organisation for the Research and Treatment of Cancer/National Cancer Institute of Canada Clinical Trials Group. The final results of that randomized phase III trial for patients with newly GBM revealed that survival of patients who received temozolomide with radiotherapy for GBM is superior to radiotherapy alone across all clinical prognostic subgroups. On the contrary, the treatment of recurrent GBM is still controversy and continues to be a moving target as new therapeutic principles enrich the standards of care for newly diagnosed disease. After upfront therapy the recurrence rates remain high (≈90%) and the Median overall survival (OS) is 15-18 months in clinical trial populations, and less than 10% of patients are alive at 5 years.

Melanocortins are peptides with well-recognized anti-inflammatory and neuroprotective activity. Of the five known melanocortin receptors (MCRs), only subtype 4 is present in astrocytes. Melanocortin receptor 4 (MC4R) is expressed predominantly in the brain, although it was also detected in adipose tissue, in human skin melanocytes. MC4R has been shown to mediate melanocortin effects on energy homeostasis, reproduction, inflammation, and neuroprotection and, recently, to modulate astrocyte functions. The signaling pathway for MC4R involves G protein-mediated activation of adenylate cyclase and increased cAMP production; in astrocytes it also involves cAMP-protein kinase A (PKA)-cAMP response element binding protein and mitogen-activated protein kinase extracellular signal-regulated kinase -1/2 activation. A recent study showed that melanocyte-stimulating hormone (MSH) induces neurogenesis in the hippocampus of animals after global ischemia and this effect is mediated by MC4R. In an animal model of focal cerebral ischemia, delayed treatment with α-MSH or treatment with Afamelanotide but not with the melanocortin receptor 3 agonist reduced neuron death. This protection correlated with decreased tumor necrosis factor-α and NO production, and decreased expression of pro-apoptotic Bax and caspase-3 activation, and also with increased serum levels of interleukin-10 and Bcl2 expression induced by Afamelanotide. In cerebral ischemia, neuroprotection by Afamelanotide also involves activation of MC4R and Bcl2 upregulation .

Recently, in experimental brain ischemia, treatment with melanocortins acting at melanocortin receptors 4 induces neural stem/progenitor cell proliferation by triggering the canonicalWnt-3A/β-catenin and Shh signaling pathway. Caruso et al. demonstrated that MC4R activation by α-MSH protects astrocytes from apoptosis. Melanocortins prevent astrocyte death by decreasing caspase-3 activity and the expression of Bax and by increasing the expression of Bcl2. As melanocortins increase astrocyte survival, this can contribute to their neuroprotective effects . Moreover, the anti-inflammatory action of α-MSH, an MCR agonist, reduces the secretion of mediators such as cytokines, NO, and prostaglandins and impairs leukocyte activation and infiltration into damaged tissues. Moreover, proliferative effects of α-MSH were reported in 7-day-old cultured astrocytes.

The Single Nucleotide Polymorphisms (SNPs) rs17782313 of the MC4R gene have shown an effect on Body Mass Index (BMI) in different populations; and a direct role in the interaction between Fat Mass and Obesity Associated (FTO) and MC4R gene polymorphisms in breast cancer development has been recently demonstrated. However, no data are currently available on MC4R gene polymorphisms and gliomas or their relationship with radiotherapy/chemotherapy with or without antiangiogenic drugs.

Given the association between MC4R with antiinflammatory activity, neuroprotection, induction of neural stem/progenitor cell proliferation in brain hypoxia, and prevention of astrocyte apoptosis, the aim of this study is to evaluate, retrospectively, the possible prognostic/predictive role of the MC4R SNPs on glioblastoma therapy. Our hypothesis is that these SNPs could have a direct role in the modulation of the therapeutic effects of radiotherapy, chemotherapy and antiangiogenic drugs on glioblastoma and they could influence the prognosis of the disease through their effect on patient's brain.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Glioblastoma

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

MC4R chemotherapy radiotherapy

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_ONLY

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

GBM patients

patients with diagnosis of glioblastoma treated with concomitant radio-chemotherapy with temozolomide as Stupp protocol will be evaluated for pharmacogenetic evaluation

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients with proven diagnosis of GBM
* Patients suitable for Radio-chemotherapy with temozolomide
* Eastern Cooperative Oncology Group Performance Status 0-2
* Age ≥ 18 years
* Willingness to provide a blood sample for genetic analysis

Exclusion Criteria

* Patients previously treated with radio or chemotherapy for central nervous system cancer
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Azienda Ospedaliero, Universitaria Pisana

OTHER

Sponsor Role collaborator

University of Pisa

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Guido Bocci

Asssistant Professor; MD, PhD

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Guido Bocci, MD, PhD

Role: PRINCIPAL_INVESTIGATOR

University of Pisa

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Division of Radiotherapy, Department Of Oncology, University Hospital of Pisa

Pisa, , Italy

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Italy

References

Explore related publications, articles, or registry entries linked to this study.

Caruso C, Carniglia L, Durand D, Scimonelli TN, Lasaga M. Astrocytes: new targets of melanocortin 4 receptor actions. J Mol Endocrinol. 2013 Sep 11;51(2):R33-50. doi: 10.1530/JME-13-0064. Print 2013 Oct.

Reference Type RESULT
PMID: 23881919 (View on PubMed)

Giuliani D, Minutoli L, Ottani A, Spaccapelo L, Bitto A, Galantucci M, Altavilla D, Squadrito F, Guarini S. Melanocortins as potential therapeutic agents in severe hypoxic conditions. Front Neuroendocrinol. 2012 Apr;33(2):179-93. doi: 10.1016/j.yfrne.2012.04.001. Epub 2012 Apr 17.

Reference Type RESULT
PMID: 22531139 (View on PubMed)

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009 May;10(5):459-66. doi: 10.1016/S1470-2045(09)70025-7. Epub 2009 Mar 9.

Reference Type RESULT
PMID: 19269895 (View on PubMed)

Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, Stupp R. Current concepts and management of glioblastoma. Ann Neurol. 2011 Jul;70(1):9-21. doi: 10.1002/ana.22425.

Reference Type RESULT
PMID: 21786296 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

University of Pisa

Identifier Type: -

Identifier Source: org_study_id