Pharmacokinetics of Lopinavir/Ritonavir Superboosting in Infants and Young Children Co-infected With HIV and TB
NCT ID: NCT02348177
Last Updated: 2017-05-11
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE4
96 participants
INTERVENTIONAL
2013-01-31
2016-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Pharmacokinetic Study of Super-boosted Lopinavir/Ritonavir Given With Rifampin
NCT01700790
Lopinavir/r/ Lamivudine/ Abacavir as an Easy to Use Paediatric Formulation
NCT03836833
Pharmacokinetics (PK) and Safety of 2 Different Doses of Lopinavir/Ritonavir in in HIV/Tuberculosis (TB) Co-infected Patients Receiving Rifampicin Containing Anti-tuberculosis Therapy
NCT01138202
Lopinavir/Ritonavir (LPV/r) Tablet in HIV Infected Children
NCT01139905
Study of Lopinavir/ Ritonavir and Lamivudine Versus Standard Therapy in Naïve HIV-1 Infected Subjects.
NCT01237444
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
LPV/r will be administered as the liquid 80/20 mg/mL formulation (4:1 standard boosting ratio). During anti-TB treatment, additional RTV liquid formulation will be provided to deliver a 1:1 superboosting ratio of LPV to RTV. Actual doses for antiretrovirals and anti-TB drugs will be based on the South African (SA) weight band dosing recommendations and provided as per the site standard of care.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
TB/HIV co-infection
Superboosting lopinavir with ritonavir in 1:1 ratio during TB/HIV co-infection and treatment of HIV with lopinavir/ritonavir 4:1
lopinavir with ritonavir in 1:1 ratio
During co-treatment of rifampicin containing tuberculosis treatment and lopinavir/ritonavir (4:1) based therapy, additional ritonavir is given to make lopinavir/ritonavir 1:1 ratio
Lopinavir/ritonavir 4:1
This is the conventional dosing of LPV/r 4:1 for HIV when TB treatment has not been started or has been stopped
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
lopinavir with ritonavir in 1:1 ratio
During co-treatment of rifampicin containing tuberculosis treatment and lopinavir/ritonavir (4:1) based therapy, additional ritonavir is given to make lopinavir/ritonavir 1:1 ratio
Lopinavir/ritonavir 4:1
This is the conventional dosing of LPV/r 4:1 for HIV when TB treatment has not been started or has been stopped
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Weight \>3kg ≤15 kg at enrolment
* \> 42 weeks gestational age
* On LPV/r-based therapy or about to start a LPV/r-based antiretroviral combination therapy with 2 NRTIs \[ABC+3TC or AZT+3TC or d4T+3TC\]
* Clinical diagnosis of TB requiring RIF-based therapy
* Parent or legal guardian able and willing to provide written informed consent and able to attend study visits.
Exclusion Criteria
* Concomitant/chronic treatment with potent enzyme-inducing/inhibiting drugs other than those in the study treatments . See Appendix E (minor inducers/inhibitors and drugs used as part of management of the condition are allowed eg. Steroids)
* Anticipation at the start that anti-TB treatment duration will be longer than 9 months
* Any other condition/finding that, in the investigator's opinion, would compromise the child's participation in this study eg. alanine transferase (ALT) more than 10 times upper limit of normal (ULN), or chronic renal, hepatic or gastrointestinal disease such as malabsorption.
* Children with known malignancies and contraindications to taking LPV/r
* Treatment with experimental drugs for any indication within 30 days prior to study entry; participation in another study may be approved by the study team.
2 Weeks
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Cape Town
OTHER
Medecins Sans Frontieres, Netherlands
OTHER
French Development Agency
OTHER_GOV
UBS Optimus Foundation
OTHER
Drugs for Neglected Diseases
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Mark Cotton, Professor
Role: PRINCIPAL_INVESTIGATOR
University of Stellenbosch
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The Children's Infectious Disease Clinical Research Unit; University of Stellenbosch
Cape Town, Western Cape, South Africa
Enhancing Care Foundation; Wendworth Hospital
Durban, , South Africa
Perinatal HIV Research Unit
Johannesburg, , South Africa
Shandukani Research WRHI
Johannesburg, , South Africa
Empilweni Services and Research Unit
Johannesburg, , South Africa
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P, Dabis F; Ghent International AIDS Society (IAS) Working Group on HIV Infection in Women and Children. Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet. 2004 Oct 2-8;364(9441):1236-43. doi: 10.1016/S0140-6736(04)17140-7.
Johnson LF, Davies MA, Moultrie H, Sherman GG, Bland RM, Rehle TM, Dorrington RE, Newell ML. The effect of early initiation of antiretroviral treatment in infants on pediatric AIDS mortality in South Africa: a model-based analysis. Pediatr Infect Dis J. 2012 May;31(5):474-80. doi: 10.1097/INF.0b013e3182456ba2.
Marston M, Becquet R, Zaba B, Moulton LH, Gray G, Coovadia H, Essex M, Ekouevi DK, Jackson D, Coutsoudis A, Kilewo C, Leroy V, Wiktor S, Nduati R, Msellati P, Dabis F, Newell ML, Ghys PD. Net survival of perinatally and postnatally HIV-infected children: a pooled analysis of individual data from sub-Saharan Africa. Int J Epidemiol. 2011 Apr;40(2):385-96. doi: 10.1093/ije/dyq255. Epub 2011 Jan 18.
Gurumurthy P, Ramachandran G, Hemanth Kumar AK, Rajasekaran S, Padmapriyadarsini C, Swaminathan S, Bhagavathy S, Venkatesan P, Sekar L, Mahilmaran A, Ravichandran N, Paramesh P. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother. 2004 Nov;48(11):4473-5. doi: 10.1128/AAC.48.11.4473-4475.2004.
McIlleron H, Ren Y, Nuttall J, Fairlie L, Rabie H, Cotton M, Eley B, Meyers T, Smith PJ, Merry C, Maartens G. Lopinavir exposure is insufficient in children given double doses of lopinavir/ritonavir during rifampicin-based treatment for tuberculosis. Antivir Ther. 2011;16(3):417-21. doi: 10.3851/IMP1757.
Zanoni BC, Phungula T, Zanoni HM, France H, Feeney ME. Impact of tuberculosis cotreatment on viral suppression rates among HIV-positive children initiating HAART. AIDS. 2011 Jan 2;25(1):49-55. doi: 10.1097/QAD.0b013e32833f9e04.
Violari A, Cotton MF, Gibb DM, Babiker AG, Steyn J, Madhi SA, Jean-Philippe P, McIntyre JA; CHER Study Team. Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med. 2008 Nov 20;359(21):2233-44. doi: 10.1056/NEJMoa0800971.
Reitz C, Coovadia A, Ko S, Meyers T, Strehlau R, Sherman G, Kuhn L, Abrams EJ. Initial response to protease-inhibitor-based antiretroviral therapy among children less than 2 years of age in South Africa: effect of cotreatment for tuberculosis. J Infect Dis. 2010 Apr 15;201(8):1121-31. doi: 10.1086/651454.
Coovadia A, Abrams EJ, Stehlau R, Meyers T, Martens L, Sherman G, Hunt G, Hu CC, Tsai WY, Morris L, Kuhn L. Reuse of nevirapine in exposed HIV-infected children after protease inhibitor-based viral suppression: a randomized controlled trial. JAMA. 2010 Sep 8;304(10):1082-90. doi: 10.1001/jama.2010.1278.
Saez-Llorens X, Violari A, Deetz CO, Rode RA, Gomez P, Handelsman E, Pelton S, Ramilo O, Cahn P, Chadwick E, Allen U, Arpadi S, Castrejon MM, Heuser RS, Kempf DJ, Bertz RJ, Hsu AF, Bernstein B, Renz CL, Sun E. Forty-eight-week evaluation of lopinavir/ritonavir, a new protease inhibitor, in human immunodeficiency virus-infected children. Pediatr Infect Dis J. 2003 Mar;22(3):216-24. doi: 10.1097/01.inf.0000055061.97567.34.
Verweel G, Burger DM, Sheehan NL, Bergshoeff AS, Warris A, van der Knaap LC, Driessen G, de Groot R, Hartwig NG. Plasma concentrations of the HIV-protease inhibitor lopinavir are suboptimal in children aged 2 years and below. Antivir Ther. 2007;12(4):453-8.
Chadwick EG, Capparelli EV, Yogev R, Pinto JA, Robbins B, Rodman JH, Chen J, Palumbo P, Serchuck L, Smith E, Hughes M; P1030 team. Pharmacokinetics, safety and efficacy of lopinavir/ritonavir in infants less than 6 months of age: 24 week results. AIDS. 2008 Jan 11;22(2):249-55. doi: 10.1097/QAD.0b013e3282f2be1d.
Chadwick EG, Pinto J, Yogev R, Alvero CG, Hughes MD, Palumbo P, Robbins B, Hazra R, Serchuck L, Heckman BE, Purdue L, Browning R, Luzuriaga K, Rodman J, Capparelli E; International Maternal Pediatric Adolescent Clinical Trials Group (IMPAACT) P1030 Team. Early initiation of lopinavir/ritonavir in infants less than 6 weeks of age: pharmacokinetics and 24-week safety and efficacy. Pediatr Infect Dis J. 2009 Mar;28(3):215-9. doi: 10.1097/INF.0b013e31818cc053.
Rakhmanina N, van den Anker J, Baghdassarian A, Soldin S, Williams K, Neely MN. Population pharmacokinetics of lopinavir predict suboptimal therapeutic concentrations in treatment-experienced human immunodeficiency virus-infected children. Antimicrob Agents Chemother. 2009 Jun;53(6):2532-8. doi: 10.1128/AAC.01374-08. Epub 2009 Mar 2.
Elsherbiny D, Ren Y, McIlleron H, Maartens G, Simonsson US. Population pharmacokinetics of lopinavir in combination with rifampicin-based antitubercular treatment in HIV-infected South African children. Eur J Clin Pharmacol. 2010 Oct;66(10):1017-23. doi: 10.1007/s00228-010-0847-9. Epub 2010 Jun 16.
Urien S, Firtion G, Anderson ST, Hirt D, Solas C, Peytavin G, Faye A, Thuret I, Leprevost M, Giraud C, Lyall H, Khoo S, Blanche S, Treluyer JM. Lopinavir/ritonavir population pharmacokinetics in neonates and infants. Br J Clin Pharmacol. 2011 Jun;71(6):956-60. doi: 10.1111/j.1365-2125.2011.03926.x.
Palumbo P, Lindsey JC, Hughes MD, Cotton MF, Bobat R, Meyers T, Bwakura-Dangarembizi M, Chi BH, Musoke P, Kamthunzi P, Schimana W, Purdue L, Eshleman SH, Abrams EJ, Millar L, Petzold E, Mofenson LM, Jean-Philippe P, Violari A. Antiretroviral treatment for children with peripartum nevirapine exposure. N Engl J Med. 2010 Oct 14;363(16):1510-20. doi: 10.1056/NEJMoa1000931.
Moorthy A, Kuhn L, Coovadia A, Meyers T, Strehlau R, Sherman G, Tsai WY, Chen YH, Abrams EJ, Persaud D. Induction therapy with protease-inhibitors modifies the effect of nevirapine resistance on virologic response to nevirapine-based HAART in children. Clin Infect Dis. 2011 Feb 15;52(4):514-21. doi: 10.1093/cid/ciq161. Epub 2011 Jan 22.
Eley BS, Meyers T. Antiretroviral therapy for children in resource-limited settings: current regimens and the role of newer agents. Paediatr Drugs. 2011 Oct 1;13(5):303-16. doi: 10.2165/11593330-000000000-00000.
McIlleron H, Willemse M, Werely CJ, Hussey GD, Schaaf HS, Smith PJ, Donald PR. Isoniazid plasma concentrations in a cohort of South African children with tuberculosis: implications for international pediatric dosing guidelines. Clin Infect Dis. 2009 Jun 1;48(11):1547-53. doi: 10.1086/598192.
Schaaf HS, Willemse M, Cilliers K, Labadarios D, Maritz JS, Hussey GD, McIlleron H, Smith P, Donald PR. Rifampin pharmacokinetics in children, with and without human immunodeficiency virus infection, hospitalized for the management of severe forms of tuberculosis. BMC Med. 2009 Apr 22;7:19. doi: 10.1186/1741-7015-7-19.
Thee S, Detjen A, Wahn U, Magdorf K. Pyrazinamide serum levels in childhood tuberculosis. Int J Tuberc Lung Dis. 2008 Sep;12(9):1099-101.
Donald PR, Maher D, Maritz JS, Qazi S. Ethambutol dosage for the treatment of children: literature review and recommendations. Int J Tuberc Lung Dis. 2006 Dec;10(12):1318-30.
Thee S, Seddon JA, Donald PR, Seifart HI, Werely CJ, Hesseling AC, Rosenkranz B, Roll S, Magdorf K, Schaaf HS. Pharmacokinetics of isoniazid, rifampin, and pyrazinamide in children younger than two years of age with tuberculosis: evidence for implementation of revised World Health Organization recommendations. Antimicrob Agents Chemother. 2011 Dec;55(12):5560-7. doi: 10.1128/AAC.05429-11. Epub 2011 Oct 3.
Berenguer J, Perez-Elias MJ, Bellon JM, Knobel H, Rivas-Gonzalez P, Gatell JM, Miguelez M, Hernandez-Quero J, Flores J, Soriano V, Santos I, Podzamczer D, Sala M, Camba M, Resino S; Spanish Abacavir, Lamivudine, and Zidovudine Cohort Study Group. Effectiveness and safety of abacavir, lamivudine, and zidovudine in antiretroviral therapy-naive HIV-infected patients: results from a large multicenter observational cohort. J Acquir Immune Defic Syndr. 2006 Feb 1;41(2):154-9. doi: 10.1097/01.qai.0000194231.08207.8a.
Shey M, Kongnyuy EJ, Shang J, Wiysonge CS. A combination drug of abacavir-lamivudine-zidovudine (Trizivir) for treating HIV infection and AIDS. Cochrane Database Syst Rev. 2009 Jul 8;(3):CD005481. doi: 10.1002/14651858.CD005481.pub2.
la Porte CJ, Colbers EP, Bertz R, Voncken DS, Wikstrom K, Boeree MJ, Koopmans PP, Hekster YA, Burger DM. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob Agents Chemother. 2004 May;48(5):1553-60. doi: 10.1128/AAC.48.5.1553-1560.2004.
Decloedt EH, McIlleron H, Smith P, Merry C, Orrell C, Maartens G. Pharmacokinetics of lopinavir in HIV-infected adults receiving rifampin with adjusted doses of lopinavir-ritonavir tablets. Antimicrob Agents Chemother. 2011 Jul;55(7):3195-200. doi: 10.1128/AAC.01598-10. Epub 2011 May 2.
Ren Y, Nuttall JJ, Egbers C, Eley BS, Meyers TM, Smith PJ, Maartens G, McIlleron HM. Effect of rifampicin on lopinavir pharmacokinetics in HIV-infected children with tuberculosis. J Acquir Immune Defic Syndr. 2008 Apr 15;47(5):566-9. doi: 10.1097/QAI.0b013e3181642257.
Frohoff C, Moodley M, Fairlie L, Coovadia A, Moultrie H, Kuhn L, Meyers T. Antiretroviral therapy outcomes in HIV-infected children after adjusting protease inhibitor dosing during tuberculosis treatment. PLoS One. 2011 Feb 23;6(2):e17273. doi: 10.1371/journal.pone.0017273.
Rae JM, Johnson MD, Lippman ME, Flockhart DA. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther. 2001 Dec;299(3):849-57.
Zhang C, McIlleron H, Ren Y, van der Walt JS, Karlsson MO, Simonsson US, Denti P. Population pharmacokinetics of lopinavir and ritonavir in combination with rifampicin-based antitubercular treatment in HIV-infected children. Antivir Ther. 2012;17(1):25-33. doi: 10.3851/IMP1915.
Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303-32. doi: 10.1146/annurev.pharmtox.48.113006.094708.
Holford N. Dosing in children. Clin Pharmacol Ther. 2010 Mar;87(3):367-70. doi: 10.1038/clpt.2009.262. Epub 2010 Jan 20. No abstract available.
Price PS, Conolly RB, Chaisson CF, Gross EA, Young JS, Mathis ET, Tedder DR. Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit Rev Toxicol. 2003;33(5):469-503.
Zar HJ, Cotton MF, Strauss S, Karpakis J, Hussey G, Schaaf HS, Rabie H, Lombard CJ. Effect of isoniazid prophylaxis on mortality and incidence of tuberculosis in children with HIV: randomised controlled trial. BMJ. 2007 Jan 20;334(7585):136. doi: 10.1136/bmj.39000.486400.55. Epub 2006 Nov 3.
Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, Sora ES, James CE, Gibbons S, Bray PG, Back DJ, Khoo SH, Owen A. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics. 2010 Feb;20(2):112-20. doi: 10.1097/FPC.0b013e328335b02d.
Chigutsa E, Visser ME, Swart EC, Denti P, Pushpakom S, Egan D, Holford NH, Smith PJ, Maartens G, Owen A, McIlleron H. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother. 2011 Sep;55(9):4122-7. doi: 10.1128/AAC.01833-10. Epub 2011 Jun 27.
Svard J, Spiers JP, Mulcahy F, Hennessy M. Nuclear receptor-mediated induction of CYP450 by antiretrovirals: functional consequences of NR1I2 (PXR) polymorphisms and differential prevalence in whites and sub-Saharan Africans. J Acquir Immune Defic Syndr. 2010 Dec 15;55(5):536-49. doi: 10.1097/QAI.0b013e3181f52f0c.
Shimizu M, Fukami T, Kobayashi Y, Takamiya M, Aoki Y, Nakajima M, Yokoi T. A novel polymorphic allele of human arylacetamide deacetylase leads to decreased enzyme activity. Drug Metab Dispos. 2012 Jun;40(6):1183-90. doi: 10.1124/dmd.112.044883. Epub 2012 Mar 13.
Nakajima A, Fukami T, Kobayashi Y, Watanabe A, Nakajima M, Yokoi T. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampicin, rifabutin, and rifapentine. Biochem Pharmacol. 2011 Dec 1;82(11):1747-56. doi: 10.1016/j.bcp.2011.08.003. Epub 2011 Aug 12.
Wiseman CA, Gie RP, Starke JR, Schaaf HS, Donald PR, Cotton MF, Hesseling AC. A proposed comprehensive classification of tuberculosis disease severity in children. Pediatr Infect Dis J. 2012 Apr;31(4):347-52. doi: 10.1097/INF.0b013e318243e27b.
Nijland HM, L'homme RF, Rongen GA, van Uden P, van Crevel R, Boeree MJ, Aarnoutse RE, Koopmans PP, Burger DM. High incidence of adverse events in healthy volunteers receiving rifampicin and adjusted doses of lopinavir/ritonavir tablets. AIDS. 2008 May 11;22(8):931-5. doi: 10.1097/QAD.0b013e3282faa71e.
Dansirikul C, Silber HE, Karlsson MO. Approaches to handling pharmacodynamic baseline responses. J Pharmacokinet Pharmacodyn. 2008 Jun;35(3):269-83. doi: 10.1007/s10928-008-9088-2. Epub 2008 Apr 30.
Gupta P, Hutmacher MM, Frame B, Miller R. An alternative method for population pharmacokinetic data analysis under noncompliance. J Pharmacokinet Pharmacodyn. 2008 Apr;35(2):219-33. doi: 10.1007/s10928-008-9085-5. Epub 2008 Feb 26.
Zhang C, Denti P, Decloedt EH, Ren Y, Karlsson MO, McIlleron H. Model-based evaluation of the pharmacokinetic differences between adults and children for lopinavir and ritonavir in combination with rifampicin. Br J Clin Pharmacol. 2013 Nov;76(5):741-51. doi: 10.1111/bcp.12101.
Galileya LT, Wasmann RE, Chabala C, Rabie H, Lee J, Njahira Mukui I, Hesseling A, Zar H, Aarnoutse R, Turkova A, Gibb D, Cotton MF, McIlleron H, Denti P. Evaluating pediatric tuberculosis dosing guidelines: A model-based individual data pooled analysis. PLoS Med. 2023 Nov 21;20(11):e1004303. doi: 10.1371/journal.pmed.1004303. eCollection 2023 Nov.
Rabie H, Tikiso T, Lee J, Fairlie L, Strehlau R, Bobat R, Liberty A, McIlleron H, Andrieux-Meyer I, Cotton M, Lallemant M, Denti P. Abacavir Exposure in Children Cotreated for Tuberculosis with Rifampin and Superboosted Lopinavir-Ritonavir. Antimicrob Agents Chemother. 2020 Apr 21;64(5):e01923-19. doi: 10.1128/AAC.01923-19. Print 2020 Apr 21.
Rabie H, Denti P, Lee J, Masango M, Coovadia A, Pillay S, Liberty A, Simon F, McIlleron H, Cotton MF, Lallemant M. Lopinavir-ritonavir super-boosting in young HIV-infected children on rifampicin-based tuberculosis therapy compared with lopinavir-ritonavir without rifampicin: a pharmacokinetic modelling and clinical study. Lancet HIV. 2018 Dec 6:S2352-3018(18)30293-5. doi: 10.1016/S2352-3018(18)30293-5. Online ahead of print.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
DNDiHIVPed001
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.