Targeting a Genetic Mutation in Glycine Metabolism With D-cycloserine

NCT ID: NCT02304432

Last Updated: 2017-09-19

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

EARLY_PHASE1

Total Enrollment

2 participants

Study Classification

INTERVENTIONAL

Study Start Date

2015-09-27

Study Completion Date

2017-07-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this study is to assess the efficacy of d-cycloserine (DCS) as an augmentation strategy in two psychotic patients with a triplication (4 copies) of the glycine decarboxylase (GLDC) gene. Subjects will first undergo an eight-week open-label arm of treatment with DCS (50 mg/d) followed by six 6-week double-blind placebo-controlled exposures to DCS or placebo. The length of each double-blind arm is limited to six weeks to minimize the length of symptom exacerbation experienced by the subjects when they are receiving placebo. The randomization scheme will allow two consecutive exposures to DCS, but will not allow two consecutive exposures to placebo, again to minimize the length of any symptom exacerbation. At the end of the open-label DCS trial, the following procedures will be carried out: structural MRI (3T), proton 1H MRS (4T), fMRI (3T), steady-state auditory evoked potentials, and electroretinogram recordings. In addition, 1H MRS (4T) for 2 hours after a single oral dose of a DCS will be assessed. Baseline data on all of these measures were previously obtained as part of a different study registered in clinical trials.gov - NCT01720316). Positive, negative, and affective symptoms and neurocognitive function as well as plasma levels of large neutral and large and small neutral and excitatory amino acids and psychotropic drug levels will be assessed periodically. Pharmaceutical grade DCS) or placebo will be compounded and dispensed by the McLean Hospital Pharmacy.

The investigators hypothesize that mutation carriers will have reduced endogenous brain glycine and GABA levels and increased brain glutamate and glutamine levels. DCS administration will increase brain glycine in the two carriers compared to baseline and treatment with glycine (0.8g/kg).

The investigators hypothesize reduced activation of magnocellular pathways and abnormal ERPs modulated by NMDA in mutation carriers compared with non-carrier family members and controls.

. The investigators hypothesize that DCS, but not placebo, will improve positive, negative and affective symptoms as well as neurocognitive function.

The investigators also hypothesize that DCS will improve clinical and cognitive functioning, will partially normalize decreased baseline glycine and GABA and increased glutamate and glutamine, and will partially normalize magnocellular pathway activation and abnormal evoked potentials.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Multiple rare structural variants of relatively recent evolutionary origin are recognized as important risk factors for schizophrenia (SZ) and other neurodevelopmental disorders (e.g., autism spectrum disorders, mental retardation, epilepsy) with odds ratios as high as 7-30. We have found a de novo structural rearrangement on chromosome 9p24.1 in two psychotic patients. One of the genes in this region is the gene encoding glycine decarboxylase (GLDC), which affects brain glycine metabolism. GLDC encodes the glycine decarboxylase or glycine cleavage system P-protein, which is involved in degradation of glycine in glia cells. Carriers of the GLDC triplication would be expected to have low levels of brain Gly, resulting in NMDA receptor-mediated hypofunction, which has been strongly implicated in the pathophysiology of schizophrenia.

There is an extensive literature on the effects of NMDA enhancing agents on positive, negative, and depressive symptoms and on neurocognitive function. Although many studies have reported positive results in at least one symptom domain, the results of other studies have been negative or ambiguous. Factors likely to contribute to this variability include: mechanism of action of the agent, compliance, concurrent treatment with first- vs second generation antipsychotic drugs, baseline glycine blood levels, presence/absence of kynurenine pathway metabolic abnormalities and individual differences in brain glycine uptake and metabolism . Genetic variants that impact the synthesis and breakdown of glycine, glutamate, or other modulators of NMDA receptor function are also likely to have significant effects. Although DCS augmentation has shown variable efficacy in patients unselected for having a mutation that would be expected to lower brain glycine levels, the GLDC triplication in the two carriers in this study would be expected to result in unusually low brain glycine levels, supporting its therapeutic potential as an augmentation strategy.

Thus, it is important to evaluate the therapeutic efficacy of DCS augmentation in individuals in whom there is a high prior probability of therapeutic benefit and to characterize the neurobiology of this mutation in terms of brain metabolites, brain function, and the pharmacokinetics of glycine metabolism using well-established methods.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Schizophrenia Bipolar Disorder

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

CROSSOVER

Primary Study Purpose

TREATMENT

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Open label DCS

Both participants received open label D-cycloserine (seromycin), 50 mg/d capsule for 8 weeks.

Group Type EXPERIMENTAL

D-cycloserine

Intervention Type DRUG

Both participants received open label D-cycloserine (seromycin), 50 mg/d capsule, x 8 weeks.

DCS or placebo

Randomized to DCS or placebo. Participants underwent double-blind placebo-controlled exposures to DCS for 6 weeks or placebo for 6 weeks. One participant received exposure to DCS for 6 weeks and then received placebo dosing for 6 weeks. The other participant received exposure to placebo dosing for 6 weeks and then DCS for 6 weeks.

Group Type EXPERIMENTAL

D-cycloserine

Intervention Type DRUG

Both participants received open label D-cycloserine (seromycin), 50 mg/d capsule, x 8 weeks.

DCS or placebo

Intervention Type DRUG

Double-blind placebo-controlled exposures to DCS or placebo x 6 weeks. One participant received exposure to DCS x 6 weeks and then received placebo dosing x 6 weeks. The other participant received exposure to placebo dosing x 6 weeks and then DCS x 6 weeks.

Second open label DCS

Both participants received second open label exposures to D-cycloserine (seromycin), 50 mg/d capsule for 24 weeks.

Group Type EXPERIMENTAL

D-cycloserine

Intervention Type DRUG

Both participants received second open label D-cycloserine (seromycin), 50 mg/d capsule, x 8 weeks.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

D-cycloserine

Both participants received open label D-cycloserine (seromycin), 50 mg/d capsule, x 8 weeks.

Intervention Type DRUG

DCS or placebo

Double-blind placebo-controlled exposures to DCS or placebo x 6 weeks. One participant received exposure to DCS x 6 weeks and then received placebo dosing x 6 weeks. The other participant received exposure to placebo dosing x 6 weeks and then DCS x 6 weeks.

Intervention Type DRUG

D-cycloserine

Both participants received second open label D-cycloserine (seromycin), 50 mg/d capsule, x 8 weeks.

Intervention Type DRUG

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Seromycin (d-cycloserine) Seromycin (d-cycloserine) or placebo Seromycin (d-cycloserine)

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Carriers of a triplication in the glycine decarboxylase gene

Exclusion Criteria

* Not carriers of a triplication in the glycine decarboxylase gene
Minimum Eligible Age

34 Years

Maximum Eligible Age

62 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Minnesota

OTHER

Sponsor Role collaborator

Mclean Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Deborah L. Levy

Director, Psychology Research Laboratory

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Deborah L. Levy, Ph.D.

Role: PRINCIPAL_INVESTIGATOR

Mclean Hospital

References

Explore related publications, articles, or registry entries linked to this study.

Sebat J, Levy DL, McCarthy SE. Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet. 2009 Dec;25(12):528-35. doi: 10.1016/j.tig.2009.10.004. Epub 2009 Oct 31.

Reference Type BACKGROUND
PMID: 19883952 (View on PubMed)

Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S, Cichon S, Corvin A, Gary S, Gershon ES, Gill M, Karayiorgou M, Kelsoe JR, Krastoshevsky O, Krause V, Leibenluft E, Levy DL, Makarov V, Bhandari A, Malhotra AK, McMahon FJ, Nothen MM, Potash JB, Rietschel M, Schulze TG, Sebat J. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011 Dec 22;72(6):951-63. doi: 10.1016/j.neuron.2011.11.007.

Reference Type BACKGROUND
PMID: 22196331 (View on PubMed)

Heinzen EL, Radtke RA, Urban TJ, Cavalleri GL, Depondt C, Need AC, Walley NM, Nicoletti P, Ge D, Catarino CB, Duncan JS, Kasperaviciutey D, Tate SK, Caboclo LO, Sander JW, Clayton L, Linney KN, Shianna KV, Gumbs CE, Smith J, Cronin KD, Maia JM, Doherty CP, Pandolfo M, Duncan JS, Sander JW, Delanty N, Leppert D, Middleton LT, Gibson RA, Johnson MR, Matthews PM, Hosford D, Kalviainen R, Eriksson K, Kantanen A-M, Dorn T, Hansen J, Kramer G, Steinhoff BJ, Wieser H-G, Steinhoff BJ, Kramer G, Hansen J, Dorn T, Zumsteg D, Ortega M, Wood NW, Huxley-Jones J, Mikati M, Gallentine WB, Husain AM, Buckley PG, Stallings RL, Podgoreanu MV, Delanty N, Sisodiya SM, Goldstein DB. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet 2010;86:707-718.

Reference Type BACKGROUND

Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D, Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL, Daly MJ; Autism Consortium. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008 Feb 14;358(7):667-75. doi: 10.1056/NEJMoa075974. Epub 2008 Jan 9.

Reference Type BACKGROUND
PMID: 18184952 (View on PubMed)

McCarthy S, Makarov V, Kirov G, Addington A, McClellan J, Yoon S, Perkins D, Dickel DE, Kusenda M, Krastoshevsky O, Krause V, Kumar RA, Grozeva D, Malhotra D, Walsh T, Zackai EH, Kaplan P, Ganesh J, Krantz ID, Spinner NB, Roccanova P, Bhandari A, Pavon K, Lakshmi B, Leotta A, Kendall J, Lee Y, Vacic V, Gary S, Iakoucheva L, Crow TJ, Christian SL, Lieberman J, Stroup S, Lehtimaki T, Puura K, Haldeman-Englert C, Pearl J, Goodell M, Willour VL, DeRosse P, Steele J, Kassem L, Wolff J, Chitkara N, McMahon F, Malhotra AK, Potash JB, Schulze T, Nothen MM, Cichon S, Rietschel M, Leibenluft E, Sutcliffe JS, Skuse D, Gill M, Gallagher L, Mendell NR, Consortium WTCC, Craddock N, Owen MJ, O'Donovan MC, Shaikh TH, Susser E, DeLisi LE, Sullivan PF, Deutsch CK, Rapoport J, Levy DL, King M-C, Sebat J. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009;41:1223-1227.

Reference Type BACKGROUND

Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995 Dec;52(12):998-1007. doi: 10.1001/archpsyc.1995.03950240016004.

Reference Type BACKGROUND
PMID: 7492260 (View on PubMed)

Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):365-84. doi: 10.1007/s10571-006-9062-8. Epub 2006 Jun 14.

Reference Type BACKGROUND
PMID: 16773445 (View on PubMed)

Javitt DC. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol. 2007;78:69-108. doi: 10.1016/S0074-7742(06)78003-5.

Reference Type BACKGROUND
PMID: 17349858 (View on PubMed)

Tsai GE, Lin PY. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des. 2010;16(5):522-37. doi: 10.2174/138161210790361452.

Reference Type BACKGROUND
PMID: 19909229 (View on PubMed)

Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav. 2012 Feb;100(4):665-77. doi: 10.1016/j.pbb.2011.03.023. Epub 2011 Apr 1.

Reference Type BACKGROUND
PMID: 21463651 (View on PubMed)

Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Horowitz A, Kelly D. Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatry. 1996 Nov;169(5):610-7. doi: 10.1192/bjp.169.5.610.

Reference Type BACKGROUND
PMID: 8932891 (View on PubMed)

Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry. 1999 Jan;56(1):29-36. doi: 10.1001/archpsyc.56.1.29.

Reference Type BACKGROUND
PMID: 9892253 (View on PubMed)

Heresco-Levy U, Javitt DC. Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res. 2004 Feb 1;66(2-3):89-96. doi: 10.1016/S0920-9964(03)00129-4.

Reference Type BACKGROUND
PMID: 15061240 (View on PubMed)

Tsai G, Yang P, Chung LC, Lange N, Coyle JT. D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 1998 Dec 1;44(11):1081-9. doi: 10.1016/s0006-3223(98)00279-0.

Reference Type BACKGROUND
PMID: 9836012 (View on PubMed)

Tsai GE, Yang P, Chung LC, Tsai IC, Tsai CW, Coyle JT. D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry. 1999 Nov;156(11):1822-5. doi: 10.1176/ajp.156.11.1822.

Reference Type BACKGROUND
PMID: 10553752 (View on PubMed)

Tsai G, Lane HY, Yang P, Chong MY, Lange N. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2004 Mar 1;55(5):452-6. doi: 10.1016/j.biopsych.2003.09.012.

Reference Type BACKGROUND
PMID: 15023571 (View on PubMed)

Tsai GE, Yang P, Chang YC, Chong MY. D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 2006 Feb 1;59(3):230-4. doi: 10.1016/j.biopsych.2005.06.032. Epub 2005 Sep 9.

Reference Type BACKGROUND
PMID: 16154544 (View on PubMed)

Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR. Adjunctive high-dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol. 2001 Dec;4(4):385-91. doi: 10.1017/S1461145701002590.

Reference Type BACKGROUND
PMID: 11806864 (View on PubMed)

Goff DC, Tsai G, Manoach DS, Flood J, Darby DG, Coyle JT. D-cycloserine added to clozapine for patients with schizophrenia. Am J Psychiatry. 1996 Dec;153(12):1628-30. doi: 10.1176/ajp.153.12.1628.

Reference Type BACKGROUND
PMID: 8942463 (View on PubMed)

Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, Tsai GE. Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry. 2008 Jan 1;63(1):9-12. doi: 10.1016/j.biopsych.2007.04.038. Epub 2007 Jul 20.

Reference Type BACKGROUND
PMID: 17659263 (View on PubMed)

Goff DC, Henderson DC, Evins AE, Amico E. A placebo-controlled crossover trial of D-cycloserine added to clozapine in patients with schizophrenia. Biol Psychiatry. 1999 Feb 15;45(4):512-4. doi: 10.1016/s0006-3223(98)00367-9.

Reference Type BACKGROUND
PMID: 10071726 (View on PubMed)

Evins AE, Fitzgerald SM, Wine L, Rosselli R, Goff DC. Placebo-controlled trial of glycine added to clozapine in schizophrenia. Am J Psychiatry. 2000 May;157(5):826-8. doi: 10.1176/appi.ajp.157.5.826.

Reference Type BACKGROUND
PMID: 10784481 (View on PubMed)

van Berckel BN, Evenblij CN, van Loon BJ, Maas MF, van der Geld MA, Wynne HJ, van Ree JM, Kahn RS. D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. Neuropsychopharmacology. 1999 Aug;21(2):203-10. doi: 10.1016/S0893-133X(99)00014-7.

Reference Type BACKGROUND
PMID: 10432468 (View on PubMed)

Wonodi I, Schwarcz R. Cortical kynurenine pathway metabolism: a novel target for cognitive enhancement in Schizophrenia. Schizophr Bull. 2010 Mar;36(2):211-8. doi: 10.1093/schbul/sbq002. Epub 2010 Feb 10.

Reference Type BACKGROUND
PMID: 20147364 (View on PubMed)

Erhardt S, Schwieler L, Nilsson L, Linderholm K, Engberg G. The kynurenic acid hypothesis of schizophrenia. Physiol Behav. 2007 Sep 10;92(1-2):203-9. doi: 10.1016/j.physbeh.2007.05.025. Epub 2007 May 21.

Reference Type BACKGROUND
PMID: 17573079 (View on PubMed)

Kaufman MJ, Prescot AP, Ongur D, Evins AE, Barros TL, Medeiros CL, Covell J, Wang L, Fava M, Renshaw PF. Oral glycine administration increases brain glycine/creatine ratios in men: a proton magnetic resonance spectroscopy study. Psychiatry Res. 2009 Aug 30;173(2):143-9. doi: 10.1016/j.pscychresns.2009.03.004. Epub 2009 Jun 24.

Reference Type BACKGROUND
PMID: 19556112 (View on PubMed)

Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry. 2007 Oct;164(10):1593-602. doi: 10.1176/appi.ajp.2007.06081358.

Reference Type BACKGROUND
PMID: 17898352 (View on PubMed)

Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schoenfeld DA, Hayden DL, McCarley R, Coyle JT. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry. 1999 Jan;56(1):21-7. doi: 10.1001/archpsyc.56.1.21.

Reference Type BACKGROUND
PMID: 9892252 (View on PubMed)

Goff DC, Herz L, Posever T, Shih V, Tsai G, Henderson DC, Freudenreich O, Evins AE, Yovel I, Zhang H, Schoenfeld D. A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl). 2005 Apr;179(1):144-50. doi: 10.1007/s00213-004-2032-2. Epub 2004 Oct 21.

Reference Type BACKGROUND
PMID: 15502972 (View on PubMed)

Goff DC, Cather C, Gottlieb JD, Evins AE, Walsh J, Raeke L, Otto MW, Schoenfeld D, Green MF. Once-weekly D-cycloserine effects on negative symptoms and cognition in schizophrenia: an exploratory study. Schizophr Res. 2008 Dec;106(2-3):320-7. doi: 10.1016/j.schres.2008.08.012. Epub 2008 Sep 16.

Reference Type BACKGROUND
PMID: 18799288 (View on PubMed)

Heresco-Levy U, Javitt DC, Ermilov M, Silipo G, Shimoni J. Double-blind, placebo-controlled, crossover trial of D-cycloserine adjuvant therapy for treatment-resistant schizophrenia. Int J Neuropsychopharmacol. 1998 Dec;1(2):131-135. doi: 10.1017/S1461145798001242.

Reference Type BACKGROUND
PMID: 11281957 (View on PubMed)

Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC. Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry. 2002 Mar;159(3):480-2. doi: 10.1176/appi.ajp.159.3.480.

Reference Type BACKGROUND
PMID: 11870017 (View on PubMed)

Prescot AP, de B Frederick B, Wang L, Brown J, Jensen JE, Kaufman MJ, Renshaw PF. In vivo detection of brain glycine with echo-time-averaged (1)H magnetic resonance spectroscopy at 4.0 T. Magn Reson Med. 2006 Mar;55(3):681-6. doi: 10.1002/mrm.20807.

Reference Type BACKGROUND
PMID: 16453318 (View on PubMed)

Martinez A, Hillyard SA, Dias EC, Hagler DJ Jr, Butler PD, Guilfoyle DN, Jalbrzikowski M, Silipo G, Javitt DC. Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci. 2008 Jul 23;28(30):7492-500. doi: 10.1523/JNEUROSCI.1852-08.2008.

Reference Type BACKGROUND
PMID: 18650327 (View on PubMed)

Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, Schroeder CE, Javitt DC. Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry. 2001 Jul;158(7):1126-33. doi: 10.1176/appi.ajp.158.7.1126.

Reference Type BACKGROUND
PMID: 11431235 (View on PubMed)

Jensen JE, Licata SC, Ongur D, Friedman SD, Prescot AP, Henry ME, Renshaw PF. Quantification of J-resolved proton spectra in two-dimensions with LCModel using GAMMA-simulated basis sets at 4 Tesla. NMR Biomed. 2009 Aug;22(7):762-9. doi: 10.1002/nbm.1390.

Reference Type BACKGROUND
PMID: 19388001 (View on PubMed)

Ongur D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry. 2008 Oct 15;64(8):718-726. doi: 10.1016/j.biopsych.2008.05.014. Epub 2008 Jul 7.

Reference Type BACKGROUND
PMID: 18602089 (View on PubMed)

Duncan EJ, Szilagyi S, Schwartz MP, Bugarski-Kirola D, Kunzova A, Negi S, Stephanides M, Efferen TR, Angrist B, Peselow E, Corwin J, Gonzenbach S, Rotrosen JP. Effects of D-cycloserine on negative symptoms in schizophrenia. Schizophr Res. 2004 Dec 1;71(2-3):239-48. doi: 10.1016/j.schres.2004.03.013.

Reference Type RESULT
PMID: 15474895 (View on PubMed)

Bodkin JA, Coleman MJ, Godfrey LJ, Carvalho CMB, Morgan CJ, Suckow RF, Anderson T, Ongur D, Kaufman MJ, Lewandowski KE, Siegel AJ, Waldstreicher E, Grochowski CM, Javitt DC, Rujescu D, Hebbring S, Weinshilboum R, Rodriguez SB, Kirchhoff C, Visscher T, Vuckovic A, Fialkowski A, McCarthy S, Malhotra D, Sebat J, Goff DC, Hudson JI, Lupski JR, Coyle JT, Rudolph U, Levy DL. Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene. Biol Psychiatry. 2019 Oct 1;86(7):523-535. doi: 10.1016/j.biopsych.2019.04.031. Epub 2019 May 9.

Reference Type DERIVED
PMID: 31279534 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Informed Consent Form

View Document

Document Type: Study Protocol

View Document

Document Type: Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1R21MH105732

Identifier Type: NIH

Identifier Source: org_study_id

View Link