Photon Versus Particle Therapy for Recurrent Lung Cancer; a Planning Study Based on a Reference Dataset of Patients.

NCT ID: NCT02029222

Last Updated: 2019-09-04

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

25 participants

Study Classification

OBSERVATIONAL

Study Start Date

2013-12-31

Study Completion Date

2019-09-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Patients with lung cancer may develop a second primary tumor or recurrent disease after previous radiotherapy. Surgical salvage therapy is the mainstay of therapeutic options. However, in case of irresectable disease, re-irradiation should be considered. Also in the postoperative setting, re-irradiation is considered after surgical salvage in case of features in the pathology specimen indicating a high risk for subsequent recurrence. However after re-irradiation, there is a high risk of 43% grade 3 (late) toxicity at 5 years (including possible fatal complications) and a relatively low chance of locoregional control of 50% at 5 years. One out of three patients survives re-irradiation without recurrence and severe complications. Improvements in both the risk of radiation-induced complications and the oncological outcome are thus warranted.

Compared to conventional radiotherapy with photons (CRT), particle therapy (PT) has the potential to inflict maximum damage on tumors with minimum collateral damage to neighboring healthy tissue. Given that the cost of particle therapy (PT) is considerably higher than that of conventional radiotherapy (RT) with photons, it is necessary to establish whether these higher costs are worthwhile in light of the expected advantages. Thus, clear evidence of the situations in which PT outperforms conventional photon treatment is needed. Publications on this topic are rare. The only recent publication has analyzed the results of 37 NSCLC patients of whom 9 were re-irradiated with at least 50 Gy using helical tomotherapy \[Kruser in press\].

We propose an in silico trial to investigate to what extend proton and 12C-ion therapy decrease the amount of irradiated normal tissue in lung cancer patients treated with radiotherapy after an initial radiotherapy treatment.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

For this in silico planning study all treatment plans will be performed in centers that are already operating and have experience in treatment planning. Photon treatment plans will be carried out in Maastricht, proton treatment plans at the University of Pennsylvania and the C-ion treatment plans at the University of Wisconsin.

A dataset with state-of-the-art image data is available. 25 patients will be included according to a-priori defined selection criteria. Each patient will function as his or her own control. For this reason, the number of patients per tumor group can be limited to 25 patients per tumor group (power = 80%, alpha = 5%).

The datasets will be stored on a secure website hosted by MAASTRO. High quality CT-images will be used for radiotherapy treatment planning. If available, secondary image information such as FDG-PET and MRI will be used for GTV delineation. All relevant OARs will be delineated in both the primary and secondary studyset. GTV/CTV will be used accordingly to the actual treatment. New DVH's will be calculated for the added OAR. Dose restrictions for the re-irradiation plan will be defined for each individual patient based on the DVH dose in the primary photon treatment plan.

Photons will be planned with direct Aperture Optimized Intensity Modulated Radiotherapy (IMRT). Protons will be planned using active beam delivery with Intensity Modulated proton therapy (IMPT)and carbon-ions with a pencil beam delivery treatment planning technique with gantry. Each participating center will use its own treatment planning system according to standard practice at that center. The GTV to PTV margin will be determined by the individual institutes according to the treatment technique and treatment modality. The same tumor dose, overall treatment time (OTT) and an equal number of fractions will be used for all treatment modalities.

Photon, proton and C-ion treatments will be compared based on dosimetric parameters on normal tissues. In addition, the NTCP for a fixed tumor dose or the same expected TCP will be determined. Cobalt Gy equivalent doses will be used when reporting the proton and carbon-ion dose. In the case of protons, a constant RBE value of 1.1 will be used for both the tumor and the normal tissues. The RBE of carbon-ions will be calculated based on the models used by the participating centers.

Dose in the following structures will be taken into account:

* Lungs
* Spinal court
* Heart
* Oesophagus

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

NSCLC

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

25 NSCLC patients

25 NSCLC patients who received curative radiotherapy. Re-irradiation can either be indicated for primary or secondary cancers in the lung. All patients referred for primary radiotherapy or chemoradiation after curative radiation therapy more or equal to one year ago with overlapping CTV will be included. The organs at risk of the primary tumor are the same organs at risk at the secondary treatment.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Re-irradiation patients for relapsed or second cancers in the left or the right lung
* Received respitory gated CT (4DCT) and PET (4DPET) scans.
* The primary treatment was radiotherapy with a curative intent
* The organs at risk of the primary tumor treatment are the same organs at risk at the secondary treatment
* 18 years or older
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Pennsylvania

OTHER

Sponsor Role collaborator

University of Wisconsin, Madison

OTHER

Sponsor Role collaborator

Maastricht Radiation Oncology

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Philippe Lambin, MD, PhD

Role: PRINCIPAL_INVESTIGATOR

Maastro Clinic, The Netherlands

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Maastricht Radiation Oncology

Maastricht, , Netherlands

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Netherlands

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

ROCOCO

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.