CNS and Plasma Amyloid-Beta Kinetics in Alzheimer's Disease
NCT ID: NCT02021682
Last Updated: 2017-12-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
58 participants
OBSERVATIONAL
2013-12-31
2017-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Clearance of brain Aβ occurs by enzymatic digestion (e.g. Insulin Degrading Enzyme, Neprilysin, etc.), cellular uptake and breakdown, transport across the blood-brain-barrier, and transport from the brain to cerebrospinal fluid (CSF) and then to blood. However, the relationship between CNS Aβ and blood Aβ is not known in humans and only partly understood in other animals. The goal is to determine the kinetics of Aβ in the CNS and blood to test the hypothesis that altered Aβ kinetics in the CNS in AD is associated with altered blood Aβ labeling kinetics. Understanding blood and CSF Aβ kinetics will contribute to a better understanding of Aβ production, transport, and breakdown within and between the brain, CSF and blood compartments. These fundamental measurements of Aβ kinetics in AD will help determine the effects of peripheral Aβ metabolism on pathophysiologic changes in AD. This information will provide key insights into whole body Aβ metabolism and will be useful for understanding the causes of AD. Further, these results may lead to a specific blood biomarker for AD.
Aim 1. To determine blood Aβ isoform SILK (stable isotope-linked kinetics) using existing steady state infusion labeled blood samples from amyloid positive and amyloid negative control participants. Blood Aβ kinetics will be compared to CSF Aβ kinetics and combined utilizing multi-compartment and structural models to determine the direction and magnitude of transport and breakdown.
Current labeling methods employ a primed continuous infusion which labels Aβ to near steady-state. In order to provide additional kinetic information on Aβ kinetics and potentially better distinguish AD from controls, an alternative pulse labeling protocol is proposed. In addition to providing clearer information on Aβ transport and clearance, the simplified labeling method makes blood Aβ kinetics feasible as a clinical test for treatment trials or as a diagnostic test.
Aim 2. To perform pulse bolus labeling in amyloid positive and amyloid negative controls and measure CSF Aβ isoform kinetics and blood Aβ isoform kinetics. Participants will be recruited to complete a pulse labeling study. Results from Aim 2 will be incorporated into complimentary models with results from Aim 1 and ongoing studies to provide measures of Aβ production, transport, and breakdown within and between the brain, CSF and blood compartments.
Approach: Based on preliminary data and published studies, the hypothesis will be tested that blood Aβ isoform kinetics are disrupted in AD and to model the Aβ production, transport and clearance between the brain and periphery. The data from these studies will be useful to model the production, transport and breakdown of Aβ throughout the human body.
Results of these aims will be utilized in complimentary modeling approaches and combined with the results of prior studies to provide a comprehensive model of in vivo Aβ kinetics in both the human CNS and periphery. The data and models will be able to confirm and exclude current hypotheses of human Aβ metabolism. The goals of the aims are to determine the CNS Aβ isoform kinetics with a pulse labeling protocol (Aim 1), and to determine the peripheral blood Aβ isoform kinetics with a pulse labeling protocol (Aim 2).
Experimental Design: A pulse labeling protocol with twenty participants was completed to simplify labeling. Pulse labeling experiments provided additional kinetics results to determine Aβ kinetic models. Of the next sixty participants most will be re-enrolled that have completed prior intravenous steady-state labeling Aβ SILK studies. All participants will have had a PET/PIB scan completed for fibrillar amyloid deposition measurements or CSF Aβ42 concentration measurements.
Clinical Study: A single pulse dose of leucine will be given at the beginning of the study and blood and/or CSF will be collected for 24-36 hours.
Data Analysis: We will compare the pulse labeling blood Aβ SILK results of the amyloid positive vs. amyloid negative control group for Aβ38, Aβ40, Aβ42, and ratios of isoforms vs. tests of amyloidosis such as PET/PIB scan and/or CSF Aβ42 concentration.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
CROSS_SECTIONAL
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Amyloid positive (Amyloidosis)
Amyloidosis defined by positive Positive emission tomography (PET)/Pittsburg Compound B (PIB) score, or low CSF Aβ42 concentration.
No interventions assigned to this group
Amyloid negative (Control)
Amyloid negative defined by negative Positive emission tomography (PET)/Pittsburg Compound B (PIB) score or high/normal CSF Aβ42 concentration .
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Clinical Dementia Rating (CDR) and PET/ PIB scores
* Age 60 or greater
Exclusion Criteria
* Active anticoagulation therapy
* Active infection
* Meningitis
* Recent syncope
* Currently on experimental treatment targeting Aβ or medications thought to influence Aβ production or clearance rates (benzodiazepines, muscarinic agents, or anti-epileptics)
60 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Neurological Disorders and Stroke (NINDS)
NIH
Washington University School of Medicine
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Randall J Bateman, MD
Role: PRINCIPAL_INVESTIGATOR
Washington University School of Medicine
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Washington University in St. Louis
St Louis, Missouri, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 2010 Dec 24;330(6012):1774. doi: 10.1126/science.1197623. Epub 2010 Dec 9.
Potter R, Patterson BW, Elbert DL, Ovod V, Kasten T, Sigurdson W, Mawuenyega K, Blazey T, Goate A, Chott R, Yarasheski KE, Holtzman DM, Morris JC, Benzinger TL, Bateman RJ. Increased in vivo amyloid-beta42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med. 2013 Jun 12;5(189):189ra77. doi: 10.1126/scitranslmed.3005615.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
In Vivo metabolism of ABeta
Identifier Type: -
Identifier Source: org_study_id