Effect of Prone Position on Liver Blood Flow and Function
NCT ID: NCT01781260
Last Updated: 2015-12-02
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
21 participants
OBSERVATIONAL
2014-05-31
2016-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Historical research has shown that the heart does not function as efficiently when an anaesthetised patient is placed in the prone position for surgery. The techniques used for anaesthetising and monitoring these patients have changed remarkably, since these studies were first performed.
It is important to know accurately how the heart functions to enable better understanding of the changes in blood flow to the liver when in the prone position.
Studies looking at blood flow to the liver when lying face down have been done before but are mainly reporting patients on the intensive care unit. These intensive care patients are different to those in theatre undergoing routine surgery. The intensive care patients are usually received in different types of drugs and monitored with several different types of monitor at the time. Perhaps most importantly is that they are placed face down on a soft air cushioned mattress and pillows rather than the rigid support used for surgical patients.
This study will look at whether the function of the liver changes when a patient is anaesthetised and is then rolled onto their front. The function of the liver will be measured by looking how it clears a specific drug from the blood. Also this study will look at how accurate a particular type of heart monitor is when an anaesthetised patient is placed onto their front.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Research has shown that cardiac output is decreased when an anaesthetised patient is placed from the supine to the prone position, and that the magnitude of these changes vary with the exact method of physical patient support in the prone position.1-3 Anaesthetic technique and methods of cardiac output monitoring used in these studies are no longer in routine use and therefore may not accurately reflect current practice of balanced anaesthesia or current monitoring techniques.
The LiDCOplus minimally invasive cardiac output monitor can be used to accurately calculate cardiac ouput and its associated derived variables (stroke volume and systemic vascular resistance). The LiDCOplus monitor uses data already available from an arterial cannula which is routinely used for monitoring patients in these circumstances. It is calibrated by using a small (0.3mmol) bolus dose of lithium chloride. This technique has been shown to be accurate and safe even after repeated calibration procedures over a short time period.4-6
Much of the evidence with regards to liver blood flow in the anaesthetised patient in prone position is from the critical care literature. There are several differences between this group of critically ill patients undergoing prone positioning for rescue therapy from refractory hypoxia due to acute lung injury and healthy patients undergoing elective surgery in the prone position. Critically ill patients have multiple cardiovascular and respiratory co-morbidities, are usually receiving infusions of vasoactive drugs and are generally positioned on soft air cushioned mattresses and pillows. Prone positioning in these patients does not seem to significantly alter hepatic function as measured by hepatic Indocyanine Green (ICG) clearance.7 8
ICG is a fluorescent dye, which can absorb infra-red light with a very rare (1:40 000) side effect profile. After intravenous injection it is almost exclusively eliminated by hepatic excretion into bile. The rate of hepatic elimination has been shown to correlate accurately with plasma disappearance rate as measured by transcutaneous infra-red absorbtion.9 It is a dynamic marker of hepatic blood flow, hepatocellular function and biliary excretion, with short term variation thought to be attributable to changes in hepatic blood flow rather than cellular dysfunction.10
The LiMON monitor uses transcutaneous infra-red light absorption (like a pulse oximeter) to measure and calculate values for ICG plasma disappearance and its associated values such as clearance rate and plasma retention rate. The technique involves intravenous injection of a small (0.25mg/kg) bolus dose of ICG. This can be repeated up to 20 times per 24hr period.
It is postulated that simultaneously measuring changes in hepatic blood flow and cardiac output will allow us to gather greater understanding of the haemodynamic changes associated with the prone position in the anaesthetised patient using current routine monitoring modalities.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Young. Fit. Minor neurosurgical operation. Prone position.
18-65 year old patients, without serious medical co-morbidities (assessed as ASA I/II status) who are having minor to moderate severity neurosurgical operations in the prone position.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* ASA (American Society of Anaesthesiologists) I/II
* Surgery in prone position
* Classification of surgery as minor / moderate severity
Exclusion Criteria
* Unable to speak or read English
* Age less than 18 years
* Age over 65 years
* Pregnancy
* Pre-existing hepatic dysfunction
* Taking oral lithium (interferes with LiDCOplus calibration factor)
* Severe valvular heart disease (reduced reliability of LiDCO measurements)
* Major severity surgery with predicted large blood loss or alteration in aortic root anatomy
* Intolerance including allergy to lithium, iodine or ICG
* Thyrotoxicosis
* Patients expected to require radio active iodine studies within one week of the study
18 Years
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Nottingham
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Queen's Medical Centre Campus, Nottingham University Hospitals NHS Trust.
Nottingham, Nottinghamshire, United Kingdom
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
12098
Identifier Type: -
Identifier Source: org_study_id