Using Perfusion MRI to Measure the Dynamic Changes in Neural Activation Associated With Caloric Vestibular Stimulation

NCT ID: NCT01659073

Last Updated: 2017-11-06

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

6 participants

Study Classification

INTERVENTIONAL

Study Start Date

2012-09-09

Study Completion Date

2013-09-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The investigators propose that Arterial Spin Labelling Functional Magnetic Imaging will be able to capture functional changes associated with caloric vestibular stimulation and better delineate the etiology of the pain augmentation that has been documented with this intervention.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

There has been recent success in utilizing the non-invasive caloric vestibular stimulation as a means of modulating chronic pain. Caloric stimulation involves cooling the ear canal with either water or a cooling probe to induce vestibular stimulation. This is a technique frequently performed as part of a neurologic exam.

The current theory of how caloric vestibular stimulation regulates pain is by thermosensory disinhibition. Temperatures below 25 C activate both cold thermoreceptors (Aδ fibers) and also C-nociceptors. These inputs pass in the spinothalamic tract to the thalamus, where the C-fiber input goes to the anterior cingulate cortex (ACC) and the Aδ fiber input passes to the thermosensory cortex in the dorsal posterior insula (dpIns). It is proposed that CVS reduces central pain by activating the parieto-insular vestibular cortex. As this area is anatomically adjacent to dorsal posterior insula, it may cross-activate it to suppress the ACC, or given both these cortical areas share pathways in the brainstem this may be the mechanism by which pain is suppressed.

Our team has successfully demonstrated arterial spin labeling (ASL), among other functional magnetic resonance imaging modalities, to capture functional changes in cerebral processing related to pain. This utilizes the principle that increases in cerebral blood flow to a specific region of the cortex is a marker for increased functioning of this region, conversely a decrease of blood flow to a specified region is a correlate of down regulation of this specific region. We propose that ASL will be able to capture functional changes associated with caloric vestibular stimulation and better delineate the etiology of the pain augmentation.

All functional studies will be conducted on a 3 Tesla scanner equipped with an 8-element, receive-only head coil. Each subject will lay in a supine position on the MRI table with their head immobilized by foam padding and a chinstrap. Every study will begin by collecting high-resolution anatomical images using a three-dimensional spoiled GRASS (Gradient Recalled Acquisition in Steady State) sequence. These structural images will be used for placement of the functional images and for anatomical atlas transformation in the image processing. The perfusion-weighted images will be acquired with a pulsed arterial spin labeling (non-invasive) approach. Once the baseline perfusion weighted functional images have been attained a continual functional image acquisition sequence will begin. During this phase the subject will have a series of three 30 second cooled ear canal irrigations separated by 60 seconds. The water will be cooled to 18 degrees Celsius using an ice water combination and standard thermometer. The irrigation will be administered at 2cc per second (total of 30cc per ear over 30 seconds) via an MRI compatible infusion pump through a modified stethoscope with perforations to ensure there is no possibility of pressure build-up within the canal. Following this series, perfusion weighted images will be collected for a subsequent 10minutes. Subjects will be welcome to discontinue from the study at any time they see fit. Each functional study will comprise 24.5 minutes. 10 minutes of baseline imaging 5.5 minutes of initial functional imaging, 4.5 min of caloric vestibular stimulation and 5.5 minutes of repeat functional imaging.

Images are to be reconstructed using software written in IDL (Interactive Data Language, Research Systems, Boulder, CO). Functional image pre-processing and statistical analyses will be performed with Statistical Parametric Mapping software (SPM2, Wellcome Department of Imaging Neuroscience, University College London, UK, http://www.fil.ion.ucl.ac.uk/spm). The end data will be a measurement, in percentage change, of blood flow to specific anatomic regions of the cortex.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Chronic Pain

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Caloric Vestibular Stimulation Functional Imaging

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Caloric Vestibular Stimulation

Caloric vestibular stimulation performed by a modified stethescope ear attachment attached to an MRI compatible infusion pump.

Group Type EXPERIMENTAL

Caloric Vestibular Stimulation

Intervention Type PROCEDURE

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Caloric Vestibular Stimulation

Intervention Type PROCEDURE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Caloric vestibular stimulation performed by a modified stethescope ear attachment attached to an MRI compatible infusion pump.

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Healthy
* 18-65

Exclusion Criteria

* Contraindication to Magnetic Resonance Imaging
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

London Health Sciences Centre Research Institute OR Lawson Research Institute of St. Joseph's

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Collin F Clarke, MD

Role: PRINCIPAL_INVESTIGATOR

London Health Sciences Centre Research Institute OR Lawson Research Institute of St. Joseph's

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Lawson Health Research Institute

London, Ontario, Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

18878

Identifier Type: -

Identifier Source: org_study_id