Fibered Confocal Fluorescence Microscopy Imaging in Patients With Diffuse Parenchymal Lung Diseases

NCT ID: NCT01624753

Last Updated: 2017-11-08

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

27 participants

Study Classification

INTERVENTIONAL

Study Start Date

2012-05-31

Study Completion Date

2017-11-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Fibered confocal fluorescence microscopy (FCFM) (CellvizioR Lung, MaunaKea Technologies, France) could potentially provide diagnostic information on fibrosis and inflammation of the distal air spaces associated with diffuse parenchymal lung diseases without the need for lung biopsies, thereby fulfilling the gap in the investigators current medical practice of a minimally invasive procedures with few complications and a high diagnostic fidelity.

In patients scheduled for bronchoscopy as part of regular clinical care/diagnostic workup, the investigators will offer the patient concurrent FCFM imaging to be performed during the bronchoscopic procedure. The investigators aim to identify and catalogue distinct and discriminating features seen on images obtained from fibered confocal fluorescence microscopy in this group of patients, and to correlate these findings with specific high resolution computed tomography (HRCT) features and pathological findings if available. Eventually the investigators hope to create diagnostic criteria for fibered confocal fluorescence microscopy image interpretation of specific diffuse parenchymal lung disease entities.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Diffuse parenchymal lung diseases (DPLD) represent a large and heterogeneous group of disorders encompassing a collection of pulmonary diseases that affect the interstitium including the alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. This spectrum of disease is encountered not only in pulmonary medicine as a collection of idiopathic conditions, but also in transplant medicine (solid organ and haematological), infectious disease (atypical pneumonias) and rheumatology (connective tissue disease/vasculitis). Although new techniques such as high resolution computed tomography (HRCT) and insights into the pathogenesis have led to a better understanding of DPLD, clinical diagnosis, management and prognostication remains a challenge.

The current diagnostic standard of DPLD is a correlation between clinical course, radiological features on HRCT and pathological findings. Even in idiopathic pulmonary fibrosis (IPF) where a typical usual interstitial pattern on HRCT is pathognomonic without the requirement of pathology, this is only diagnostic in 80% of patients, and an atypical pattern on HRCT does not preclude a diagnosis of IPF. As such the final diagnosis often hinges on histopathological confirmation which traditionally requires a surgical lung biopsy under general anaesthetic via thoracoscopy or thoracotomy. This entails significant morbidity and mortality in this group of patients who already have respiratory compromise. Minimally invasive endoscopic procedures such as bronchoalveolar lavage (BAL) and transbronchial lung biopsy (TBLB) via flexible bronchoscopy have increasingly been used in the majority of cases as a substitute to surgical biopsy. This unfortunately is not entirely a benign procedure either - BAL can worsen hypoxaemia, and TBLB may lead to significant bleeding or pneumothorax in around 5% of patients. Furthermore, the diagnostic yield of TBLB is severely limited because of the small size of tissue and the blind nature of choosing target bronchopulmonary segments to biopsy. Other limitations include significant inter-observer variation in interpretation of the histology, and the problem of ''sampling error'': the possibility that a biopsy specimen was taken from an area not representative of the predominant disease process. These limitations are reflected in the low diagnostic yields reported - in immunocompromised patients, the diagnostic yield of either BAL or TBLB was 38% with a 13% complication rate, and diagnostic yields of \<50% with TBLB have been reported in hypersensitivity pneumonitis and about 30% in usual interstitial pneumonia.

A definitive diagnosis is essential in the management of diffuse parenchymal lung diseases. Infectious aetiologies necessitate antimicrobial therapy while immune mediated causes are managed by immunosuppression. Drug induced pathology will require a revision of current medication while fibrotic conditions can be managed expectantly. Prognostication is also markedly altered by aetiology and diagnosis. The gap in current medical practice is the availability of minimally invasive procedures with few complications and a high diagnostic fidelity.

Fibered confocal fluorescence microscopy (FCFM) (CellvizioR Lung, MaunaKea Technologies, France) is a new, safe and minimally invasive technique that can be used to obtain real time high-resolution, microstructural images of lobular and alveolar lung structures in living humans. FCFM provides a clear, in-focus image of a thin section within a biological sample, where the microscope's objective is replaced by a flexible fiberoptic miniprobe. The technique makes it possible to obtain high-quality images from endogenous or exogenous tissue fluorophores, through a fiberoptic probe of 1.4mm diameter that can be introduced into the working channel of a standard, flexible bronchoscope. This could potentially provide diagnostic information on fibrosis and inflammation of the distal air spaces associated with diffuse parenchymal lung diseases without the need for lung biopsies.

Current data and imaging for pulmonary FCFM is available in normal alveoli of both smokers and non-smokers. Pathological lung FCFM imaging for DPLD has yet to be published. In patients scheduled for bronchoscopy as part of regular clinical care/diagnostic workup, the investigators will offer the patient concurrent fibered confocal fluorescence microscopy imaging to be performed during the bronchoscopic procedure. The investigators aim to identify and catalogue distinct and discriminating features seen on images obtained from FCFM in this group of patients, and to correlate these findings with specific HRCT features and pathological findings if available. The investigators hope to be able to demonstrate reproducibility of FCFM image interpretation, with minimal intra and inter observer variability and high Kappa values. Eventually the investigators hope to define diagnostic criteria and patterns for FCFM image interpretation to correlate with specific DPLD entities, thereby creating an atlas of FCFM for DPLD. This would enhance our current diagnosis and management of DPLD with minimal additional risks to the patients.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Diffuse Parenchymal Lung Diseases

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

interstitial lung disease interstitial pneumonia idiopathic pulmonary fibrosis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

confocal microscopy

During bronchoscopy, one side of the bronchial tree will be examined (either right or left) and targeted based on pre-procedure HRCT/CT scan findings. A 1.4mm diameter Alveoflex Confocal MiniprobeTM (MaunaKea Technologies, France) will be deployed down the working channel of the standard bronchoscope and advanced distally into the alveoli. Images are acquired by gentle contact providing real-time imaging and microstructural detail of the alveolus which will be continuously recorded during the procedure and stored for further morphometric and cellular analyses. Up to 10 bronchoalveolar areas will be observed and the location of the corresponding lung segment will be registered according to the international bronchial nomenclature.

Group Type EXPERIMENTAL

confocal microscopy

Intervention Type DEVICE

During bronchoscopy, one side of the bronchial tree will be examined (either right or left) and targeted based on pre-procedure HRCT/CT scan findings. A 1.4mm diameter Alveoflex Confocal MiniprobeTM (MaunaKea Technologies, France) will be deployed down the working channel of the standard bronchoscope and advanced distally into the alveoli. Images are acquired by gentle contact providing real-time imaging and microstructural detail of the alveolus which will be continuously recorded during the procedure and stored for further morphometric and cellular analyses. Up to 10 bronchoalveolar areas will be observed and the location of the corresponding lung segment will be registered according to the international bronchial nomenclature.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

confocal microscopy

During bronchoscopy, one side of the bronchial tree will be examined (either right or left) and targeted based on pre-procedure HRCT/CT scan findings. A 1.4mm diameter Alveoflex Confocal MiniprobeTM (MaunaKea Technologies, France) will be deployed down the working channel of the standard bronchoscope and advanced distally into the alveoli. Images are acquired by gentle contact providing real-time imaging and microstructural detail of the alveolus which will be continuously recorded during the procedure and stored for further morphometric and cellular analyses. Up to 10 bronchoalveolar areas will be observed and the location of the corresponding lung segment will be registered according to the international bronchial nomenclature.

Intervention Type DEVICE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Fibered confocal fluorescence microscopy imaging alveoloscopy Alveoflex Confocal MiniprobeTM

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Patients 21 years old and older diagnosed with suspected diffuse parenchymal lung disease (multi-lobar pulmonary infiltrates)
2. Patients scheduled for bronchoscopy as part of regular clinical care/diagnostic workup
3. Ability and willingness to sign informed consent

Exclusion Criteria

1. Contraindications to bronchoscopic evaluation eg. Haemodynamic instability, respiratory failure, uncorrected coagulopathy
2. Suspected/confirmed pregnancy
Minimum Eligible Age

21 Years

Maximum Eligible Age

90 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Singapore General Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Su Ying Low, BMBCh

Role: PRINCIPAL_INVESTIGATOR

Singapore General Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Singapore General Hospital

Singapore, , Singapore

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Singapore

References

Explore related publications, articles, or registry entries linked to this study.

American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med. 2002 Jan 15;165(2):277-304. doi: 10.1164/ajrccm.165.2.ats01. No abstract available.

Reference Type BACKGROUND
PMID: 11790668 (View on PubMed)

Thiberville L, Salaun M, Lachkar S, Dominique S, Moreno-Swirc S, Vever-Bizet C, Bourg-Heckly G. Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy. Eur Respir J. 2009 May;33(5):974-85. doi: 10.1183/09031936.00083708. Epub 2009 Feb 12.

Reference Type BACKGROUND
PMID: 19213792 (View on PubMed)

Thiberville L, Moreno-Swirc S, Vercauteren T, Peltier E, Cave C, Bourg Heckly G. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med. 2007 Jan 1;175(1):22-31. doi: 10.1164/rccm.200605-684OC. Epub 2006 Oct 5.

Reference Type BACKGROUND
PMID: 17023733 (View on PubMed)

Newton RC, Kemp SV, Yang GZ, Elson DS, Darzi A, Shah PL. Imaging parenchymal lung diseases with confocal endomicroscopy. Respir Med. 2012 Jan;106(1):127-37. doi: 10.1016/j.rmed.2011.09.009. Epub 2011 Oct 14.

Reference Type BACKGROUND
PMID: 22000588 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2012/245/Cfcfm

Identifier Type: -

Identifier Source: org_study_id