Pressure Pain Thresholds and Basal Electromyographic Activities Following Spinal Mechanical Manipulation

NCT ID: NCT01469533

Last Updated: 2011-11-10

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

30 participants

Study Classification

INTERVENTIONAL

Study Start Date

2011-07-31

Study Completion Date

2011-10-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this study is to investigate if the application of spinal mechanical manipulation on low back region resulted in changes in pressure pain thresholds (PPT) in asymptomatic subjects and the extent of the hypoalgesia; whether it is local, regional or systemic. Simultaneously, the investigators are to further explore the phenomenon of reduced sEMG activity after spinal mechanical manipulation to better understand the immediate effects of mechanical manipulation on low back region.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Spinal manipulation (SM) is used by clinicians for the treatment of several chronic pain conditions. The effectiveness of different spinal manipulations targeted at the lumbar spine in patients with low back pain is supported by an increasing number of high-quality randomized clinical trials1and systematic reviews. Although these techniques have shown some effectiveness in clinical practice, most of clinical studies solely investigated the effects of spinal manipulation on overall reports of pain and function and the underlying mechanisms by which manipulation produce clinical effects remain largely unknown.

The neurophysiologic mechanisms by which manipulation inhibits pain, however, are matters of speculation and still under investigation. Proposed hypotheses have suggested that manipulation has the potential to remove the source of mechanical pain or induce stimulus-produced analgesia. Spinal manipulation induces sufficient force to simultaneously activate both superficial and deep somatic mechanoreceptors, proprioceptors, and nociceptors. The effect of this stimulation is a strong afferent segmental barrage of spinal cord sensory neurons, capable of altering the pattern of afferent input to the central nervous system and inhibiting the central transmission of pain. Other suggested mechanisms have been the activation of the endogenous opiate system, the alteration of the chemical mediators or the effects of joint cavitation. An understanding of the mechanism by which manipulations cause a hypoalgesic response is subject to further research and is currently far from complete. A review of the literature found several studies exploring immediate changes in mechanical pain sensitivity provoked by spinal manipulative procedures. Mobilisation/manipulation to the cervical spine has been shown to provide a hypoalgesic effect as measured by pressure pain thresholds (PPTs) in patients suffering from mechanical neck pain and lateral epicondylalgia. A hypoalgesic effect has also been demonstrated following mobilization to peripheral joints in the upper and lower limbs. Mobilizations to the lumbar spine have been shown to produce an immediate and significant widespread hypoalgesic effect in asymptomatic subjects However, Perry et al. that found unilateral mobilizations on the lumbar spine respectively had side specific response.

Besides analgesic effect, it has been presented spinal manipulation can reduce the increased resting muscle tone or spasm, which can be monitored by surface electromyography (sEMG). If the presence of a hypertonic muscle is functionally associated with a spinal dysfunction that is correctable by SM, it would consequently follow that the associated higher EMG level would diminish after appropriate SM. In a descriptive study DeVocht JW et al. found that manipulation induces an immediate change, usually a reduction, in resting EMG level in patients with low back pain. Herzog J reported the observation of a single but very dramatic decrease in resting EMG activity in thoracic musculature within 1 second of SM. One possible segmental mechanism could be that the manipulation may induce a reflex muscle relaxation by modifying proprioceptive group 1 and 2 afferents. However, few randomly controlled trials have directly investigated the effect of spinal mechanical manipulation on basal electromyographic activity (BEA) in asymptomatic subjects.

Spinal mechanical manipulation has been widely used in clinical manual therapy. However, because mechanical thrusts usually produce no cavitations, whether mechanical techniques produce the same hypoalgesic effects and muscle relaxation as manual techniques remains untested. To further elucidate the physiologic mechanisms associated with spinal mechanical manipulation, it is essential to investigate its effects in asymptomatic individuals who do not have any active central sensitization. In fact, recent studies have supported the use of asymptomatic subjects in studies related to neurophysiological mechanisms of spinal manipulations. Further research is therefore required to clarify if there is a hypoalgesic effect or muscle relaxation in response to spinal mechanical manipulation in the lumbar region in asymptomatic subjects.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Pain

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

CROSSOVER

Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

experimental group

The experimental group receives the real spinal mechanical manipulation.

Group Type EXPERIMENTAL

Spinal mechanical manipulation intervention

Intervention Type OTHER

Subjects in experimental group are assessed through use of the Activator Methods (AM) assessment protocol. Spinal adjustment of the indicated pelvis, sacrum and lumbar spine is performed through the use of spinal mechanical manipulation. In this study leg length analysis only uses Position #1 and Position #2. Mechanical manipulation is delivered with the Activator Ⅳ Adjusting Instrument (AAI Ⅳ; Activator Methods International, Ltd, Phoenix, AZ) set in the maximal force setting 4, as it is used in routine clinical practice. The Activator Ⅳ delivers a very short duration (\<5 ms) force-time impulse with a peak force magnitude of approximately 176N.

control group

The control group receives the sham-manipulation procedure.

Group Type SHAM_COMPARATOR

Sham manipulation intervention

Intervention Type OTHER

Subjects in the control group receive a protocol identical to that described above, with the following exception: a sham mechanical thrust is delivered during the AM protocol. The sham procedure is accomplished by setting the expansion control knob on the Activator Ⅱ to the zero (off) position. The expansion control is used to adjust the spring compression and thus the amount of excursion of the instruments' stylus. In the zero position, no excursion of the stylus occurs, although the same clicking sound that the instrument produces during normal use is heard after manual activation of the mechanical trigger.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Spinal mechanical manipulation intervention

Subjects in experimental group are assessed through use of the Activator Methods (AM) assessment protocol. Spinal adjustment of the indicated pelvis, sacrum and lumbar spine is performed through the use of spinal mechanical manipulation. In this study leg length analysis only uses Position #1 and Position #2. Mechanical manipulation is delivered with the Activator Ⅳ Adjusting Instrument (AAI Ⅳ; Activator Methods International, Ltd, Phoenix, AZ) set in the maximal force setting 4, as it is used in routine clinical practice. The Activator Ⅳ delivers a very short duration (\<5 ms) force-time impulse with a peak force magnitude of approximately 176N.

Intervention Type OTHER

Sham manipulation intervention

Subjects in the control group receive a protocol identical to that described above, with the following exception: a sham mechanical thrust is delivered during the AM protocol. The sham procedure is accomplished by setting the expansion control knob on the Activator Ⅱ to the zero (off) position. The expansion control is used to adjust the spring compression and thus the amount of excursion of the instruments' stylus. In the zero position, no excursion of the stylus occurs, although the same clicking sound that the instrument produces during normal use is heard after manual activation of the mechanical trigger.

Intervention Type OTHER

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Activator methods maximal setting Activator methods zero setting

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* asymptomatic volunteers
* age from 18 to 60 years

Exclusion Criteria

* aversion to manual contact
* symptoms in the low back or lower extremities
* previous history of spine surgery
* receiving any manual therapy within the past 1 month before the study
* any contraindication to manipulation
* regular use of analgesic or anti-inflammatory drugs
Minimum Eligible Age

18 Years

Maximum Eligible Age

60 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

RenJi Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Xiangrui Wang

Role: STUDY_DIRECTOR

RenJi Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Renji Hospital

Shanghai, Shanghai Municipality, China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

References

Explore related publications, articles, or registry entries linked to this study.

Giles LG, Muller R. Chronic spinal pain: a randomized clinical trial comparing medication, acupuncture, and spinal manipulation. Spine (Phila Pa 1976). 2003 Jul 15;28(14):1490-502; discussion 1502-3. doi: 10.1097/00007632-200307150-00003.

Reference Type BACKGROUND
PMID: 12865832 (View on PubMed)

Lawrence DJ, Meeker W, Branson R, Bronfort G, Cates JR, Haas M, Haneline M, Micozzi M, Updyke W, Mootz R, Triano JJ, Hawk C. Chiropractic management of low back pain and low back-related leg complaints: a literature synthesis. J Manipulative Physiol Ther. 2008 Nov-Dec;31(9):659-74. doi: 10.1016/j.jmpt.2008.10.007.

Reference Type BACKGROUND
PMID: 19028250 (View on PubMed)

Boal RW, Gillette RG. Central neuronal plasticity, low back pain and spinal manipulative therapy. J Manipulative Physiol Ther. 2004 Jun;27(5):314-26. doi: 10.1016/j.jmpt.2004.04.005.

Reference Type BACKGROUND
PMID: 15195039 (View on PubMed)

Cramer G, Budgell B, Henderson C, Khalsa P, Pickar J. Basic science research related to chiropractic spinal adjusting: the state of the art and recommendations revisited. J Manipulative Physiol Ther. 2006 Nov-Dec;29(9):726-61. doi: 10.1016/j.jmpt.2006.09.003.

Reference Type BACKGROUND
PMID: 17142166 (View on PubMed)

Vernon H. Qualitative review of studies of manipulation-induced hypoalgesia. J Manipulative Physiol Ther. 2000 Feb;23(2):134-8. doi: 10.1016/s0161-4754(00)90084-8.

Reference Type BACKGROUND
PMID: 10714544 (View on PubMed)

de Camargo VM, Alburquerque-Sendin F, Berzin F, Stefanelli VC, de Souza DP, Fernandez-de-las-Penas C. Immediate effects on electromyographic activity and pressure pain thresholds after a cervical manipulation in mechanical neck pain: a randomized controlled trial. J Manipulative Physiol Ther. 2011 May;34(4):211-20. doi: 10.1016/j.jmpt.2011.02.002. Epub 2011 Mar 21.

Reference Type BACKGROUND
PMID: 21621722 (View on PubMed)

Fernandez-Carnero J, Fernandez-de-las-Penas C, Cleland JA. Immediate hypoalgesic and motor effects after a single cervical spine manipulation in subjects with lateral epicondylalgia. J Manipulative Physiol Ther. 2008 Nov-Dec;31(9):675-81. doi: 10.1016/j.jmpt.2008.10.005.

Reference Type BACKGROUND
PMID: 19028251 (View on PubMed)

DeVocht JW, Pickar JG, Wilder DG. Spinal manipulation alters electromyographic activity of paraspinal muscles: a descriptive study. J Manipulative Physiol Ther. 2005 Sep;28(7):465-71. doi: 10.1016/j.jmpt.2005.07.002.

Reference Type BACKGROUND
PMID: 16182019 (View on PubMed)

Fernandez-de-Las-Penas C, Alonso-Blanco C, Cleland JA, Rodriguez-Blanco C, Alburquerque-Sendin F. Changes in pressure pain thresholds over C5-C6 zygapophyseal joint after a cervicothoracic junction manipulation in healthy subjects. J Manipulative Physiol Ther. 2008 Jun;31(5):332-7. doi: 10.1016/j.jmpt.2008.04.006.

Reference Type BACKGROUND
PMID: 18558274 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

RenJiH-2011020

Identifier Type: -

Identifier Source: org_study_id