Comparison of Constant Current to Constant Voltage Stimulation in Subthalamic Deep Brain Stimulation for Parkinson's Disease
NCT ID: NCT01423565
Last Updated: 2015-03-18
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
8 participants
INTERVENTIONAL
2011-09-30
2012-03-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established therapy for advanced Parkinson's disease (PD). Two types of implantable pulse generators (IPGs) are available, differing on whether voltage or electrical current is controlled. Constant current IPGs provide a specific electrical current and will automatically adjust the voltage depending on the impedance, while the current applied by constant voltage IPGs will depend on the tissue impedance that may change over time. No study has compared the clinical differences of these two electronic modalities.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Constant Current Versus Constant Voltage Subthalamic Nucleus Deep Brain Stimulation in Patients with Parkinson's Disease
NCT06742450
Mapping and Manipulating the Emotional Territories of the Basal Ganglia in PD Patients
NCT01267409
STN-Stimulation Versus Best Medical Treatment in Advanced PD
NCT00196911
Emotional and Cognitive Subthalamic Nucleus in Deep Brain Stimulation Treated Parkinson Patients
NCT01590056
Mapping and Stimulating the Limbic Areas of the Subthalamic Nucleus
NCT01962194
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The clinical effects of DBS result from the delivery of electrical charge to brain tissue. The way this electrical charge is delivered depends on the electronics of implantable pulse generators (IPGs). IPGs apply pulses of electrical stimulation in which voltage or current increases from zero to a maximum value for a period of time (order of tens of microseconds) and then returns to zero.
There are two types IPGs , differing on whether voltage or electrical current is controlled (3).
1. Constant - voltage IPGs: in this type of IPG there is control over the maximum voltage associated with each pulse. The maximum current will vary depending on the impedance. A specific voltage is programmed. The amount of electrical current delivered with a constant voltage depends on the impedance of the tissue and the electrodes. Thus, the voltage will not indicate how much electrical current is given; the resistance will determine this parameter.
2. Constant - current IPGs: provide a specific electrical current and will automatically adjust the voltage depending on the impedance. The strength of stimulation will remain the same regardless of changes in the impedance. The difference in impedances on each electrode and the intersubject variability in impedances will not alter the electrical current by modifying the voltage.
Until fairly recently, only constant voltage IPG's have been available for use. A newer generation of IPG's have been available for more than a year that can provide either constant voltage or constant current according to physician and patient preference. There is no evidence yet to support the preferential use of one modality over the other.
IMPORTANCE OF THE STUDY Following DBS electrode implantation, the impedances within the same patient can vary widely. Surgical implantation changes tissue impedance, being usually higher immediately after surgery. In this case the patient will require higher electrical currents. After the initial tissue reaction subsides, the reduction of impedance will generate an increase of the charge density. For this reason it is commonplace to wait at least 2 weeks after electrode implantation before programming the IPG.
Furthermore, different contacts on the same DBS lead can have widely varying impedances. Effects or side effects associated with stimulation of one electrode contact often cannot be applied to a different contact on the same DBS lead in the same patient because the impedances may differ.
The range of impedances that can be measured will depend on the choice of voltage. In some patients, the voltage used therapeutically may not be enough to allow an accurate measure of the impedances, causing confusion regarding the structural and electrical integrity of the IPG.
For all the above mentioned factors, the clinical results in patients with constant - voltage IPGs will depend on the experience of the operator to deal with the different aspects related to tissue and electrode impedances to achieve the desired current. The electronic properties of constant - current IPGs allows the system to make voltage adjustments in order to maintain the desired current and the subsequent clinical effect. This has been the theoretical background for the development of constant current IPG's; whether or not this theory is true in practice is the subject of this study.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Deep Brain Stimulation
Deep Brain Stimulation (Medtronic, Activa PC)
Following subthalamic nucleus deep brain stimulation patients will be randomized to receive either constant current or constant voltage stimulation and subsequently "crossed over" to receive the other type of stimulation
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Deep Brain Stimulation (Medtronic, Activa PC)
Following subthalamic nucleus deep brain stimulation patients will be randomized to receive either constant current or constant voltage stimulation and subsequently "crossed over" to receive the other type of stimulation
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Subthalamic Deep Brain Stimulation Surgery
30 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hadassah Medical Organization
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Israel Zvi
Dr. Zvi Israel, Director, Functional Neurosurgery
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Zvi Israel, MBBS
Role: STUDY_DIRECTOR
Hadassah Medical Organization
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hadassah University Hospital
Jerusalem, , Israel
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
386150-HMO-CTIL
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.