Role of Immune Activation in Response of Head and Neck Squamous Cell Carcinoma to Therapy
NCT ID: NCT01358097
Last Updated: 2014-04-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
33 participants
OBSERVATIONAL
2010-10-31
2013-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Immunologic Responses in HPV-Associated Carcinoma for Patients Receiving Chemoradiation
NCT01958515
Combining Radiation Therapy With Immunotherapy for the Treatment of Metastatic Squamous Cell Carcinoma of the Head and Neck
NCT05721755
First Line Weekly Chemo/Immunotherapy for Metastatic Head/Neck Squamous Cell Carcinoma Patients
NCT04858269
Anti-tumor Specific Immune Response in Head and Neck Cancers
NCT02881918
Pembrolizumab, INCB081776, and Radiation Therapy for Head and Neck Squamous Cell Carcinoma
NCT06308913
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_CONTROL
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Patients with HPV positive tumors
No interventions assigned to this group
Patients with HPV negative tumors
No interventions assigned to this group
Control
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* The patient is to undergo treatment with radiation, chemo-radiation, or robotic surgery.
* The patient is able to give informed consent.
* The patient is at least 18 years old.
* The patient's ECOG performance status is \</=2.
Exclusion Criteria
* The patient has active cancer in another part of the body, with the exception of superficial cutaneous basal cell or squamous cell carcinomas.
* If a cancer survivor, the disease free interval is less than 5 years, with the exception of superficial cutaneous basal cell or squamous cell carcinomas.
* The patient is a minor.
* The patient is pregnant.
* The patient is a prisoner.
* The patient is incapable of understanding the consent process.
* The patient has previously received definitive surgical, radiation, or chemoradiation treatment for HNSCC.
* The patient has a history of HIV or other known cause of immunosuppression, or is actively taking immunosuppressive medications due to organ transplantation, rheumatoid disease, or other medical conditions.
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Icahn School of Medicine at Mount Sinai
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Andrew Sikora, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
Icahn School of Medicine at Mount Sinai
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Icahn School of Medicine at Mount Sinai, Otolaryngology - Head and Neck Surgery
New York, New York, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001 Oct 15;94(2):153-6. doi: 10.1002/ijc.1440. No abstract available.
Viale PH. The American Cancer Society's Facts & Figures: 2020 Edition. J Adv Pract Oncol. 2020 Mar;11(2):135-136. doi: 10.6004/jadpro.2020.11.2.1. Epub 2020 Mar 1. No abstract available.
Nasman A, Attner P, Hammarstedt L, Du J, Eriksson M, Giraud G, Ahrlund-Richter S, Marklund L, Romanitan M, Lindquist D, Ramqvist T, Lindholm J, Sparen P, Ye W, Dahlstrand H, Munck-Wikland E, Dalianis T. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer. 2009 Jul 15;125(2):362-6. doi: 10.1002/ijc.24339.
Ringstrom E, Peters E, Hasegawa M, Posner M, Liu M, Kelsey KT. Human papillomavirus type 16 and squamous cell carcinoma of the head and neck. Clin Cancer Res. 2002 Oct;8(10):3187-92.
Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol. 2006 Jun 10;24(17):2606-11. doi: 10.1200/JCO.2006.06.1291.
Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, Forastiere A, Gillison ML. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008 Feb 20;100(4):261-9. doi: 10.1093/jnci/djn011. Epub 2008 Feb 12.
Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, Westra WH, Chung CH, Jordan RC, Lu C, Kim H, Axelrod R, Silverman CC, Redmond KP, Gillison ML. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010 Jul 1;363(1):24-35. doi: 10.1056/NEJMoa0912217. Epub 2010 Jun 7.
Stanley MA. Immune responses to human papilloma viruses. Indian J Med Res. 2009 Sep;130(3):266-76.
Lehoux M, D'Abramo CM, Archambault J. Molecular mechanisms of human papillomavirus-induced carcinogenesis. Public Health Genomics. 2009;12(5-6):268-80. doi: 10.1159/000214918. Epub 2009 Aug 11.
de Vos van Steenwijk PJ, Heusinkveld M, Ramwadhdoebe TH, Lowik MJ, van der Hulst JM, Goedemans R, Piersma SJ, Kenter GG, van der Burg SH. An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res. 2010 Apr 1;70(7):2707-17. doi: 10.1158/0008-5472.CAN-09-4299. Epub 2010 Mar 16.
Albers A, Abe K, Hunt J, Wang J, Lopez-Albaitero A, Schaefer C, Gooding W, Whiteside TL, Ferrone S, DeLeo A, Ferris RL. Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res. 2005 Dec 1;65(23):11146-55. doi: 10.1158/0008-5472.CAN-05-0772.
Hoffmann TK, Arsov C, Schirlau K, Bas M, Friebe-Hoffmann U, Klussmann JP, Scheckenbach K, Balz V, Bier H, Whiteside TL. T cells specific for HPV16 E7 epitopes in patients with squamous cell carcinoma of the oropharynx. Int J Cancer. 2006 Apr 15;118(8):1984-91. doi: 10.1002/ijc.21565.
Tindle RW. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer. 2002 Jan;2(1):59-65. doi: 10.1038/nrc700.
Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007 Jul 7;370(9581):59-67. doi: 10.1016/S0140-6736(07)61050-2.
Chaturvedi AK, Madeleine MM, Biggar RJ, Engels EA. Risk of human papillomavirus-associated cancers among persons with AIDS. J Natl Cancer Inst. 2009 Aug 19;101(16):1120-30. doi: 10.1093/jnci/djp205. Epub 2009 Jul 31.
Frumento G, Piazza T, Di Carlo E, Ferrini S. Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets. 2006 Sep;6(3):233-7. doi: 10.2174/187153006778250019.
Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006 Jun 1;66(11):5527-36. doi: 10.1158/0008-5472.CAN-05-4128.
Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008 Apr;222:162-79. doi: 10.1111/j.1600-065X.2008.00602.x.
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009 Mar;9(3):162-74. doi: 10.1038/nri2506.
Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001 Jan 1;166(1):678-89. doi: 10.4049/jimmunol.166.1.678.
Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009 Jan;58(1):49-59. doi: 10.1007/s00262-008-0523-4. Epub 2008 Apr 30.
Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007 May;117(5):1155-66. doi: 10.1172/JCI31422.
Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, Buer J, Liblau R, Manns MP, Korangy F, Greten TF. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology. 2008 Sep;135(3):871-81, 881.e1-5. doi: 10.1053/j.gastro.2008.06.032. Epub 2008 Jun 12.
Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O'Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007 Jun 11;204(6):1463-74. doi: 10.1084/jem.20062602. Epub 2007 Jun 4.
Brys L, Beschin A, Raes G, Ghassabeh GH, Noel W, Brandt J, Brombacher F, De Baetselier P. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol. 2005 May 15;174(10):6095-104. doi: 10.4049/jimmunol.174.10.6095.
Angulo I, de las Heras FG, Garcia-Bustos JF, Gargallo D, Munoz-Fernandez MA, Fresno M. Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood. 2000 Jan 1;95(1):212-20.
Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, Khoury SJ. CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol. 2007 Oct 15;179(8):5228-37. doi: 10.4049/jimmunol.179.8.5228.
Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun. 2008 Dec;31(4):354-61. doi: 10.1016/j.jaut.2008.08.006. Epub 2008 Oct 5.
Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol. 2006 Feb 15;176(4):2085-94. doi: 10.4049/jimmunol.176.4.2085.
Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol. 2005 Oct 1;175(7):4583-92. doi: 10.4049/jimmunol.175.7.4583.
Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res. 2002 Dec;12(5-6):311-20. doi: 10.1038/sj.cr.7290133.
Ambs S, Merriam WG, Ogunfusika MO, Bennett WP, Ishibe N, Hussain SP, Tzeng EE, Geller DA, Billiar TR, Harris CC. p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med. 1998 Dec;4(12):1371-6. doi: 10.1038/3957.
Kao J, Packer S, Vu HL, Schwartz ME, Sung MW, Stock RG, Lo YC, Huang D, Chen SH, Cesaretti JA. Phase 1 study of concurrent sunitinib and image-guided radiotherapy followed by maintenance sunitinib for patients with oligometastases: acute toxicity and preliminary response. Cancer. 2009 Aug 1;115(15):3571-80. doi: 10.1002/cncr.24412.
Thomas KA. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem. 1996 Jan 12;271(2):603-6. doi: 10.1074/jbc.271.2.603. No abstract available.
Riedel F, Gotte K, Schwalb J, Wirtz H, Bergler W, Hormann K. Serum levels of vascular endothelial growth factor in patients with head and neck cancer. Eur Arch Otorhinolaryngol. 2000;257(6):332-6. doi: 10.1007/s004059900208.
Ambs S, Bennett WP, Merriam WG, Ogunfusika MO, Oser SM, Khan MA, Jones RT, Harris CC. Vascular endothelial growth factor and nitric oxide synthase expression in human lung cancer and the relation to p53. Br J Cancer. 1998 Jul;78(2):233-9. doi: 10.1038/bjc.1998.470.
Marrogi AJ, Travis WD, Welsh JA, Khan MA, Rahim H, Tazelaar H, Pairolero P, Trastek V, Jett J, Caporaso NE, Liotta LA, Harris CC. Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin Cancer Res. 2000 Dec;6(12):4739-44.
Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR, Dvorak HF. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res. 1993 Oct 1;53(19):4727-35.
Nakamura Y, Yasuoka H, Tsujimoto M, Yang Q, Tsukiyama A, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K. Clinicopathological significance of vascular endothelial growth factor-C in breast carcinoma with long-term follow-up. Mod Pathol. 2003 Apr;16(4):309-14. doi: 10.1097/01.MP.0000062858.98295.9F.
Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 2002 Jan 15;168(2):689-95. doi: 10.4049/jimmunol.168.2.689.
Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother. 2002 Aug;51(6):293-8. doi: 10.1007/s00262-002-0280-8. Epub 2002 Apr 24.
Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007 Oct 15;67(20):10019-26. doi: 10.1158/0008-5472.CAN-07-2354.
Liu WM, Fowler DW, Smith P, Dalgleish AG. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer. 2010 Jan 5;102(1):115-23. doi: 10.1038/sj.bjc.6605465. Epub 2009 Dec 8.
Nowak AK, Lake RA, Robinson BW. Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev. 2006 Oct 1;58(8):975-90. doi: 10.1016/j.addr.2006.04.002. Epub 2006 Aug 15.
Vu HL, Sikora AG, Fu S, Kao J. HPV-induced oropharyngeal cancer, immune response and response to therapy. Cancer Lett. 2010 Feb 28;288(2):149-55. doi: 10.1016/j.canlet.2009.06.026. Epub 2009 Jul 22.
Smeets SJ, Hesselink AT, Speel EJ, Haesevoets A, Snijders PJ, Pawlita M, Meijer CJ, Braakhuis BJ, Leemans CR, Brakenhoff RH. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer. 2007 Dec 1;121(11):2465-72. doi: 10.1002/ijc.22980.
Kadish AS, Ho GY, Burk RD, Wang Y, Romney SL, Ledwidge R, Angeletti RH. Lymphoproliferative responses to human papillomavirus (HPV) type 16 proteins E6 and E7: outcome of HPV infection and associated neoplasia. J Natl Cancer Inst. 1997 Sep 3;89(17):1285-93. doi: 10.1093/jnci/89.17.1285.
Kadish AS, Timmins P, Wang Y, Ho GY, Burk RD, Ketz J, He W, Romney SL, Johnson A, Angeletti R, Abadi M; Albert Einstein Cervix Dysplasia Clinical Consortium. Regression of cervical intraepithelial neoplasia and loss of human papillomavirus (HPV) infection is associated with cell-mediated immune responses to an HPV type 16 E7 peptide. Cancer Epidemiol Biomarkers Prev. 2002 May;11(5):483-8.
Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Pecorelli S, Parham GP. Radiation-enhanced expression of E6/E7 transforming oncogenes of human papillomavirus-16 in human cervical carcinoma. Cancer. 1998 Dec 1;83(11):2346-52. doi: 10.1002/(sici)1097-0142(19981201)83:113.0.co;2-g.
Eric A, Juranic Z, Tisma N, Plesinac V, Borojevic N, Jovanovic D, Milovanovic Z, Gavrilovic D, Ilic B. Radiotherapy-induced changes of peripheral blood lymphocyte subpopulations in cervical cancer patients: relationship to clinical response. J BUON. 2009 Jan-Mar;14(1):79-83.
Delgado FG, Martinez E, Cespedes MA, Bravo MM, Navas MC, Combita Rojas AL. Increase of human papillomavirus-16 E7-specific T helper type 1 response in peripheral blood of cervical cancer patients after radiotherapy. Immunology. 2009 Apr;126(4):523-34. doi: 10.1111/j.1365-2567.2008.02912.x. Epub 2008 Sep 5.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
GCO 10-1219
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.