SWC on aEEG in Post-surgical Neonates on Morphine and Midazolam
NCT ID: NCT01212419
Last Updated: 2010-10-01
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
47 participants
OBSERVATIONAL
2009-03-31
2009-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Study design: This prospective aEEG study included infants \> 32+0 weeks' gestation admitted to the Neonatal Intensive Care Unit at The Royal Children's Hospital in Melbourne who were undergoing major non-cardiac surgery. The BrainZ Monitor (BRM2, Version 8.0, BrainZ Instruments, New Zealand) was applied post-operatively. The time of onset and quality of SWC and the maximum levels of morphine and midazolam as predictors of time to SWC were then assessed.
Results: Forty-seven eligible infants were included. Emergence of SWC was observed at a mean of 13 hours post-surgery. The maximum dose of morphine or midazolam was not predictive of time to SWC.
Conclusions: Despite high doses of continuous infusions of morphine and midazolam SWC was observed on aEEG in neonates \> 32 weeks' gestational age soon after major non-cardiac surgery. The main type of aEEG background pattern was not affected by the maximum dose of either morphine or midazolam. Abnormalities in aEEG in post-surgical patients are not always drug related.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Amplitude-integrated electroencephalography (aEEG) is being increasingly used to monitor cerebral activity at the bedside in the neonatal intensive care unit (NICU) (7). Widely used scoring systems for aEEG incorporate consideration of background activity, presence of sleep wake cycling (SWC) and seizures (8). There are several aEEG reports indicating that analgesic and sedative agents routinely used in neonates suppress amplitude and therefore alter background activity (9,10,11,12,13) and it is believed that interpretation of aEEG in sedated patients is unreliable. Most of these studies have been conducted investigating pre-term infants or infants with hypoxic-ischaemic encephalopathy.
Sleep characteristics have been reported as predictors of neurodevelopmental outcome (14,15,16) and there is general agreement that indices of stability in SWC over time are positively correlated with improved clinical outcomes. SWC is described as smooth sinusoidal variations, mostly in the minimum amplitude. Phases with broader bandwidth represent discontinuous background activity during quiet sleep, whilst the phases with narrower bandwidth correspond to the more continuous activity during wakefulness and active sleep. SWC develops with increasing maturation of the child. From 31 to 32 weeks' gestational age, quiet sleep periods are clearly discernable in the aEEG trace as distinct periods with increased bandwidth. At term-equivalent age these periods represent trace alternant electroencephalography (EEG) patterns (17). The average duration of quiet sleep periods is 24 to 28 minutes for infants between 32 and 36 weeks' gestational age. These periods are slightly longer at night but are otherwise relatively stable and are not affected by incubator covers or developmental care interventions (18). The internal trigger for SWC is located in the brainstem and the presence of SWC in healthy term newborns is considered a sign of brain stem integrity (19,20). In newborns with hypoxic-ischemic encephalopathy sleep organization can be altered and the presence of SWC on aEEG is considered to be a good prognostic sign (21). Timing of onset of SWC has been shown to predict neurodevelopmental outcome based on whether the SWC returns before or after 36 hours of a presumed hypoxic insult (22).
There are several reports indicating that analgesic and sedative agents routinely used in neonates may lead to amplitude depression on aEEG. However, to our knowledge there are currently no reports of aEEG studies and SWC in newborn infants requiring major non-cardiac surgery during the neonatal period. Studying background activity and emergence of SWC on aEEG in neonates requiring major non-cardiac surgery may provide useful information about the relationship of analgesia and sedation and cerebral function in the post-operative infant. Knowledge of the effects of drugs that may modify cerebral activity is important to the interpretation of aEEG's in critically ill neonates requiring high doses of analgesics and sedatives.
The aim of this prospective observational aEEG study was to describe the influence of analgesic and sedative medication on background pattern and the development of SWC in newborn infants born \> 32 weeks' gestation after major non-cardiac surgery.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* abdominal surgery
Exclusion Criteria
* neurologically compromised
32 Weeks
50 Weeks
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Royal Children's Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Monika Olischar
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Monika Olischar, MD
Role: PRINCIPAL_INVESTIGATOR
Royal Children's Hospital
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
HREC #28122
Identifier Type: -
Identifier Source: org_study_id