Bicarbonate in Cardiac Surgery

NCT ID: NCT00878956

Last Updated: 2012-08-01

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

TERMINATED

Clinical Phase

PHASE2

Total Enrollment

427 participants

Study Classification

INTERVENTIONAL

Study Start Date

2009-04-30

Study Completion Date

2012-01-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

With over one million operations a year, cardiac surgery with cardiopulmonary bypass is one of the most common major surgical procedures worldwide (1). Acute kidney injury is a common and serious postoperative complication of cardiopulmonary bypass and may affect 25% to 50% of patients (2-4). Acute kidney injury carries significant costs (4) and is independently associated with increased morbidity and mortality (2,3). Even minimal increments in plasma creatinine are associated with an increase in mortality (5,6).

Multiple causes of cardiopulmonary bypass-associated acute kidney injury have been proposed, including ischemia-reperfusion, generation of reactive oxygen species, hemolysis and activation of inflammatory pathways (7-10). To date, no simple, safe and effective intervention to prevent cardiopulmonary bypass-associated acute kidney injury in a broad patient population has been found (11-14).

Urinary acidity may enhance the generation and toxicity of reactive oxygen species induced by cardiopulmonary bypass (10,15). Activation of complement during cardiac surgery (16) may also participate in kidney injury. Urinary alkalinization may protect from kidney injury induced by oxidant substances, iron-mediated free radical pathways, complement activation and tubular hemoglobin cast formation (9,17,18). Of note, increasing urinary pH - in combination with N-acetylcysteine (19,20) or without (21) - has recently been reported to attenuate acute kidney injury in patients undergoing contrast-media infusion.

In a pilot double-blind, randomized controlled trial the investigators found sodium bicarbonate to be efficacious, safe, inexpensive and easy to administer. These findings now need to be confirmed or refuted by further clinical investigations in other geographic and institutional settings.

Accordingly, the investigators hypothesized that urinary alkalinization might protect kidney function in patients at increased risk of acute kidney injury undergoing cardiopulmonary bypass needs to be confirmed in an international multicenter, double-blind, randomized controlled trial of intravenous sodium bicarbonate.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Renal impairment following cardiopulmonary bypass is common. While most of these patients do not require either short or long term renal replacement, the mortality of patients with acute renal failure is substantially greater than those who do not develop renal dysfunction.

In a pilot double-blind, randomized controlled trial we found sodium bicarbonate to be efficacious, safe, inexpensive and easy to administer. These findings now need to be confirmed or refuted by further clinical investigations in other geographic and institutional settings.

There is evidence that sodium bicarbonate affects the cardiovascular, respiratory and immune systems and may be of benefit to patients undergoing cardiac surgery.

Study Design - overview and rationale

Patients will be randomised to receive sodium bicarbonate from the induction of anaesthesia until 24 hours postoperatively, or a placebo (sodium chloride).

Serum creatinine is the most commonly used clinical indicator of renal function along with urine output. Both will be measured for several days postoperatively - the time period during which renal impairment is most likely to develop.

Randomisation The randomisation will be based on random numbers generated by computer. Once consent is obtained, the allocation of either treatment with sodium bicarbonate or placebo will be organised by an independent person (clinical trials pharmacist) who will dispense the coded and blinded infusion bags (shrink-wrapped in extra black plastic bags). This will be delivered to the anaesthetic staff looking after the patient in theatre, and the ICU nurse caring for the patient postoperatively.

20 ml samples of heparinised blood and urine will be taken from the arterial line or urine catheter. Samples will be taken immediately after the preoperative insertion of the arterial/urine catheter, at 6, 24, 48, 72, 96 and 120 hours after commencement of cardiopulmonary bypass. Immediately following collection, the preoperative, 6 and 24 hour blood and urine will be centrifuged at low speed to separate the plasma from the cellular components. Urine and plasma will be stored in aliquots at -70 degrees prior to batch analysis.

The following variables will be obtained:

Code for patient, gender and age. Date and time of admission to ICU Operative procedure and date and time on and off cardiopulmonary bypass Preoperative assessment of left ventricular function, Comorbidities, Pre-, intra- and post-operative medication, Markers of renal function as described above, Doses of frusemide administered (or rate of frusemide infusion) Use of inotropes or vasopressors Cardiac output whenever measured for clinical purposes in the first 24 hours postoperatively Requirement of renal replacement therapy Urine output in each 6 hour period during the presence of urine catheter Acid base status and electrolytes at baseline, 6 and 24 hours after commencement of cardiopulmonary bypass, Time of intubation and extubation, Date and time of arrival on and discharge from ICU and hospital, death Resources required The principle of the study has been discussed with the involved cardiac anaesthetists, cardiac surgeons, intensivists and intensive care nurses, who have offered their co-operation. ICU research nurse to allocate patients and collect clinical data. Pharmacy will be required to prepare drug and placebo infusion bags. Clinical pathology will be required to perform 24 hour creatinine clearance estimation (in addition to those tests clinically indicated) Protocol violations All protocol violations will be recorded. It will then be decided whether the nature of such violation had been such that the patient should be excluded from primary data analysis. Such evaluation will be blinded to treatment.

Withdrawal

The treating clinician will have the right to withdraw the patient from the study if he or she believes that continued participation is jeopardising the patient's well being.

Ethical Issues

Sodium bicarbonate used in this study is considered to be very safe as has been demonstrated by its widespread clinical use in the management of critically ill patients with metabolic acidosis. We consider the potential benefit of this treatment theoretically significant. Given the balance of benefits and risks, we consider it ethical to proceed and seek informed consent.

Indemnity

This is an investigator-initiated study and, accordingly, no commercial sponsor's indemnity has been provided.

Informed consent will be obtained from the patient prior to the operation by one of the investigators or the ICU research nurse. The clinical care of a patient who does not consent for any reason will not be affected.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Acute Kidney Injury

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

Cardiac surgery Cardiopulmonary bypass Oxidative stress Acute renal dysfunction Sodium bicarbonate

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

1

In all patients body weight adjusted dose of study medication will be achieved by infusion of sodium bicarbonate at a dose of 0.5 mmol/kg body weight (=bolus) diluted in 250 mL over 1 hour immediately after the induction of anesthesia, prior to the first surgical incision followed by continuous intravenous infusion of 0.2 mmol/kg/hr (=maintenance) diluted in 1000 mL 23 hours (total dose of 5 mmol/kg over 24 hours).

Group Type ACTIVE_COMPARATOR

Sodium Bicarbonate

Intervention Type DRUG

In all patients body weight adjusted dose of study medication will be achieved by infusion of sodium bicarbonate at a dose of 0.5 mmol/kg body weight (=bolus) diluted in 250 mL over 1 hour immediately after the induction of anesthesia, prior to the first surgical incision followed by continuous intravenous infusion of 0.2 mmol/kg/hr (=maintenance) diluted in 1000 mL 23 hours (total dose of 5 mmol/kg over 24 hours).

2

In all patients body weight adjusted dose of study medication will be achieved by infusion of sodium chloride at a dose of 0.5 mmol/kg body weight (=bolus) diluted in 250 mL over 1 hour immediately after the induction of anesthesia, prior to the first surgical incision followed by continuous intravenous infusion of 0.2 mmol/kg/hr (=maintenance) diluted in 1000 mL 23 hours (total dose of 5 mmol/kg over 24 hours).

Group Type PLACEBO_COMPARATOR

Sodium Chloride

Intervention Type DRUG

In all patients body weight adjusted dose of study medication will be achieved by infusion of sodium chloride at a dose of 0.5 mmol/kg body weight (=bolus) diluted in 250 mL over 1 hour immediately after the induction of anesthesia, prior to the first surgical incision followed by continuous intravenous infusion of 0.2 mmol/kg/hr (=maintenance) diluted in 1000 mL 23 hours (total dose of 5 mmol/kg over 24 hours).

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Sodium Bicarbonate

In all patients body weight adjusted dose of study medication will be achieved by infusion of sodium bicarbonate at a dose of 0.5 mmol/kg body weight (=bolus) diluted in 250 mL over 1 hour immediately after the induction of anesthesia, prior to the first surgical incision followed by continuous intravenous infusion of 0.2 mmol/kg/hr (=maintenance) diluted in 1000 mL 23 hours (total dose of 5 mmol/kg over 24 hours).

Intervention Type DRUG

Sodium Chloride

In all patients body weight adjusted dose of study medication will be achieved by infusion of sodium chloride at a dose of 0.5 mmol/kg body weight (=bolus) diluted in 250 mL over 1 hour immediately after the induction of anesthesia, prior to the first surgical incision followed by continuous intravenous infusion of 0.2 mmol/kg/hr (=maintenance) diluted in 1000 mL 23 hours (total dose of 5 mmol/kg over 24 hours).

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age above 70 years
* Pre-existing renal impairment (preoperative plasma creatinine concentration \> 1.4 mg/dL
* New York Heart Association class III/IV or impaired left ventricular function (left ventricular ejection fraction \< 50%)
* Valvular surgery or concomitant valvular and coronary artery bypass graft surgery
* Redo cardiac surgery
* Insulin-dependent diabetes mellitus

Exclusion Criteria

* End stage renal disease (plasma creatinine concentration \> 3.4 mg/dL)
* Emergency cardiac surgery
* Planned off-pump cardiac surgery
* Known blood-borne infectious disease
* Chronic inflammatory disease on immunosuppression
* Chronic moderate to high dose corticosteroid therapy (\> 10 mg/d prednisone or equivalent)
* Enrolled in conflicting research study
* Age \< 18 years
Minimum Eligible Age

70 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Austin Health

OTHER_GOV

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Rinaldo Bellomo

Director of ICU Research

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Rinaldo Bellomo, MD, FRACP

Role: PRINCIPAL_INVESTIGATOR

Austin Hospital, Melbourne Australia

Frank van Haren, MD

Role: STUDY_CHAIR

Waikato Hospital, Hamilton, New Zealand

Shay McGuinness, MB ChB, FRCA, FANZCA

Role: STUDY_CHAIR

Auckland City Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Austin Hospital

Melbourne, Victoria, Australia

Site Status

Warringal Private Hospital

Melbourne, Victoria, Australia

Site Status

Auckland City Hospital

Auckland, , New Zealand

Site Status

Waikato Hospital

Hamilton, , New Zealand

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Australia New Zealand

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

H2007/02808

Identifier Type: -

Identifier Source: org_study_id