Respiratory and Autonomic Plasticity Following Intermittent Hypoxia

NCT ID: NCT00860743

Last Updated: 2017-11-01

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

EARLY_PHASE1

Total Enrollment

63 participants

Study Classification

INTERVENTIONAL

Study Start Date

2009-09-30

Study Completion Date

2013-09-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The prevalence of obstructive sleep apnea is high in the Veteran population. If not treated promptly, sleep apnea may result in daytime fatigue which may lead to increased prevalence of accidents while driving or in the workplace. Recent large scale epidemiological studies have shown that the prevalence of excessive daytime sleepiness increases in individuals who suffer from obstructive sleep apnea. Obstructive sleep apnea may also result in the development of hypertension and other cardiovascular disorders. Previous findings have shown that subjects with sleep apnea have a greater risk for developing coronary vascular disease compared to individuals that do not suffer from sleep apnea Thus, a significant amount of evidence suggests that sleep apnea is a major health concern in the Veteran population. Consequently, determining the mechanisms that may impact on the severity of sleep apnea and increase the prevalence of cardiovascular incidents associated with this disorder is important, as is discovering novel treatments.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Approximately 8 % of the Veteran population in the United States suffers from sleep apnea. Consequences of untreated sleep apnea include increased daytime fatigue, hypertension and stroke. Thus, sleep apnea is a major health concern. One of the primary hallmarks of sleep apnea is exposure to intermittent hypoxia (IH) which occurs as a consequence of central or obstructive apneas. Exposure to IH may lead to neural plasticity (i.e. a change in system performance based on prior experience) of the respiratory and autonomic nervous system. One adaptation that has been shown to manifest itself in animals following exposure to IH is long-term facilitation (LTF) of ventilation and sympathetic nervous system activity (SNSA). This phenomenon is characterized by a gradual increase in respiratory motor activity and SNSA during successive periods of normoxia that separate hypoxic episodes and by activity that persists above baseline levels for up to 90 minutes following exposure to IH. Although LTF of minute ventilation has been well established in animals it has not been observed consistently in healthy humans or in individuals with obstructive sleep apnea. Similarly, although a few studies have shown that exposure to IH leads to increases in SNSA in healthy individuals the magnitude of the response has varied significantly. Findings from animal studies suggest that the manifestation of LTF in humans might in part be dependent on a variety of factors, including prior exposure to IH, arousal state (wake vs. sleep) and gender. Thus, the initial aim of our proposal will establish whether LTF can be induced in healthy humans and individuals with obstructive sleep apnea and whether the magnitude of the response is dependent on those factors mentioned above. Moreover, the initial aim will explore whether the presence of LTF of minute ventilation promotes or mitigates apnea severity. Animal studies have also indicated that LTF of respiratory and autonomic activity may in part be induced by increases in oxidative stress. Thus, the second objective of our proposal will explore whether administration of an antioxidant cocktail impacts respiratory and autonomic nervous system plasticity during wakefulness and sleep following IH. Likewise, the second aim will explore whether administration of an antioxidant cocktail alters apnea severity following exposure to IH. Establishing whether LTF of minute ventilation exists in individuals with sleep apnea is important since activation of this phenomenon could impact on apnea severity across the night. Similarly, LTF of SNSA activity and possibly long-term depression (LTD) of parasympathetic nervous system activity (PNSA) could ultimately lead to persistent increases in blood pressure and heart rate. Furthermore, given that exposure to IH may lead to long-term plasticity of respiratory and autonomic activity that are physiologically detrimental, exploring mechanisms that ultimately lead to treatments that may mitigate or prevent the manifestation of this phenomenon are important.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Sleep Apnea Syndromes

Keywords

Explore important study keywords that can help with search, categorization, and topic discovery.

intermittent hypoxia ventilatory long-term facilitation autonomic nervous system plasticity

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

FACTORIAL

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

DOUBLE

Participants Investigators

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Arm 1

We plan to study 10 males and 10 females with moderate obstructive sleep apnea (OSA), and 10 healthy males and 10 healthy females. The males and the females will be matched based on age, race, sex and body mass index. The OSA and control participants will be exposed to intermittent hypoxia and "sham" intermittent hypoxia during wakefulness and sleep.

Group Type NO_INTERVENTION

No interventions assigned to this group

ANTIOXIDANT COCKTAIL

We plan to study 10 male participants with moderate obstructive sleep apnea (OSA) and 10 male control participants matched for age, race and body mass index. The OSA and control participants will be exposed to intermittent hypoxia during wakefulness and sleep following administration of an antioxidant or a placebo cocktail that will be presented in a randomized fashion.

Group Type EXPERIMENTAL

Antioxidant cocktail

Intervention Type DRUG

120 mg of Coenzyme Q10 (orally), 800 mg of Superoxide Dismutase (orally), 400 IU of Vitamin E (orally) before exposure to intermittent hypoxia. Two doses of 1 g of Vitamin C in 50 cc of saline IV (in the vein) before and after exposure to intermittent hypoxia.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Antioxidant cocktail

120 mg of Coenzyme Q10 (orally), 800 mg of Superoxide Dismutase (orally), 400 IU of Vitamin E (orally) before exposure to intermittent hypoxia. Two doses of 1 g of Vitamin C in 50 cc of saline IV (in the vein) before and after exposure to intermittent hypoxia.

Intervention Type DRUG

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Characteristics of OSA subject population:

* Body mass index \< 30 kg/m2.
* 20 to 40 years old.
* Newly diagnosed never-treated mild to moderate sleep apnea (i.e. 50 \> apnea/hypopnea index \>10 events per hour - average nocturnal oxygen saturation \> 90%).
* Not pregnant.
* Free of any other known medical conditions.
* Not taking any medication.
* Non-smokers with normal lung function.
* Minimal alcohol consumption (i.e. no more than the equivalent of a glass of wine/day).

Characteristics of control group population:

* Body mass index \< 30 kg/m2.
* 20 to 40 years old.
* Apnea/hypopnea index \< 5 events per hour.
* Not pregnant.
* Free of any known medical conditions.
* Not taking any medication.
* Non-smokers with normal lung function.
* Minimal alcohol consumption (i.e. no more than the equivalent of a glass of wine/day).
Minimum Eligible Age

20 Years

Maximum Eligible Age

40 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

VA Office of Research and Development

FED

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jason H Mateika, PhD MS BS

Role: PRINCIPAL_INVESTIGATOR

John D. Dingell VA Medical Center, Detroit

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

John D. Dingell VA Medical Center, Detroit

Detroit, Michigan, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Mateika JH, Syed Z. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations. Respir Physiol Neurobiol. 2013 Sep 15;188(3):289-300. doi: 10.1016/j.resp.2013.04.010. Epub 2013 Apr 12.

Reference Type RESULT
PMID: 23587570 (View on PubMed)

Syed Z, Lin HS, Mateika JH. The impact of arousal state, sex, and sleep apnea on the magnitude of progressive augmentation and ventilatory long-term facilitation. J Appl Physiol (1985). 2013 Jan 1;114(1):52-65. doi: 10.1152/japplphysiol.00985.2012. Epub 2012 Nov 8.

Reference Type RESULT
PMID: 23139361 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

GRANT00507547

Identifier Type: OTHER_GRANT

Identifier Source: secondary_id

PULM-014-08F

Identifier Type: -

Identifier Source: org_study_id