Measurement of Anti-TB Drugs in Lung Tissue From Patients Having Surgery to Treat Tuberculosis
NCT ID: NCT00816426
Last Updated: 2019-12-09
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
PHASE1
19 participants
INTERVENTIONAL
2008-12-29
2017-12-29
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
People 20 years of age and older with hard-to-treat TB who have elected to undergo surgical removal of part of their lung at the National Masan Tuberculosis Hospital, Masan, the Asan Medical Center, and the Samsung Medical Center, may be eligible for this study.
Participants undergo the following procedures:
* Medical history and physical examination, including sputum sample.
* Blood tests at various times during the study.
* Drug administration. Subjects are given one dose each of five common TB drugs rifampicin, isoniazid, pyrazinamide, kanamycin and moxifloxacin before they undergo surgery to remove part of their lung. After surgery, some of the lung tissue and fluid around the lungs that was removed during surgery will be examined to determine the regions where the TB bacteria live and analyze the lung tissue itself.
* Dynamic MRI (magnetic resonance imaging) scan. This type of scan uses a magnetic field and radio waves to produce pictures of the lung. Subjects lie very still on a table inside the cylindrical scanner with their head on a soft cradle and their hands over their head. Several images are obtained for less than 5 minutes at a time.
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
1
Dosing 2 hours before surgery. -Rifampicin (RIF) will be dosed orally at 600mg or 50mg for subjects under 50kg of bodyweight;-Isoniazid (INH) will be dosed orally at 300mg;-Pyrazinamide (PZA) will be dosed orally at 1.5g;-Moxifloxacin (MXF) will be dosed orally at 400mg;-Kanamycin (KM) will be dosed intramuscularly at 1g or 750mg for subjects under 50kg of body weight
Rifampicin
Rifampicin or rifampin (RIF) is a semi-synthetic compound derived from Amycolatopsis rifamycinica. It is mostly used in combination to treat TB, while other disease indications include brucellosis, leprosy, legionnaire's disease and problematic drug-resistant staphylococcal infections. RIF inhibits DNA-dependent RNA polymerase in bacterial cells by binding its beta-subunit, thus preventing transcription to RNA. Its MIC against replicating TB bacilli is 0.1 g/ml and its minimum bactericidal activity (MBC) is 0.5 g/mL. It is one of the rare anti-TB drugs with some activity against nonreplicating cells.
Isoniazid
Isoniazid (INH) is a first-line antituberculous medication discovered in 1952 and used in the prevention (alone) and treatment (in combination) of tuberculosis. Isoniazid is a prodrug and must be activated by a bacterial catalase to inhibit the synthesis of mycolic acids in the mycobacterial cell wall. Consequently, INH is bactericidal to rapidly-dividing mycobacteria, with an MIC of 0.05 g/ml and an MBC of 1 g/ml, but is inactive if the mycobacterium is nonreplicating or slow-growing.
Pyrazinamide
Pyrazinamide (PZA) is a synthetic derivative of nicotinamide requiring ctivation by the mycobacterial enzyme pyrazinamidase, only active under acidic conditions which are thought to be found within the phagolysosomal compartment of macrophages. The conversion product, pyrazinoic acid, inhibits fatty acid synthetase I, required by the bacterium to synthesize fatty acids, though this has been disputed. It has an MIC of 6 g/ml and is not cidal under in vitro conditions. Overall, its mechanism of action and reasons for good sterilizing activity in vivo are poorly understood. It is part of the 4-drug combination recommended by the WHO to treat drugsensitive tuberculosis and is also included in most econd-line regimens.
Kanamycin
Kanamycin (KM) is an aminoglycoside antibiotic belonging to the same class of drugs as Streptomycin, one of the first drugs used to treat TB in the 50 s. It kills sensitive bacteria by binding to the 30S ribosomal subunit and interfering with protein synthesis. Its MIC and MBC against MTB are 2 and 6 g/mL, respectively, with a remarkably low MBC/MIC ratio. However, KM is only used to treat serious bacterial infections due to severe renal toxicity and ototoxicity. No interaction with the metabolism of other drugs has been reported. The drug is approved by the Korean Ministry of Food and Drug Safety (MFDS) but not the US FDA for use against pulmonary TB.
Moxifloxacin
Moxifloxacin (MXF) is a synthetic fluoroquinolone antibiotic. It inhibits bacterial topoisomerase II (DNA gyrase) and topoisomerase IV, which are essential enzymes playing a crucial role in the replication and repair of bacterial DNA. Its MIC, MBC and intracellular activity against MTB are 0.5, 2 and 1 g/mL, respectively, with again a low MBC/MIC ratio.
2
Dosing 4 hours before surgery. -Rifampicin (RIF) will be dosed orally at 600mg or 50mg for subjects under 50kg of bodyweight;-Isoniazid (INH) will be dosed orally at 300mg;-Pyrazinamide (PZA) will be dosed orally at 1.5g;-Moxifloxacin (MXF) will be dosed orally at 400mg;-Kanamycin (KM) will be dosed intramuscularly at 1g or 750mg for subjects under 50kg of body weight
Rifampicin
Rifampicin or rifampin (RIF) is a semi-synthetic compound derived from Amycolatopsis rifamycinica. It is mostly used in combination to treat TB, while other disease indications include brucellosis, leprosy, legionnaire's disease and problematic drug-resistant staphylococcal infections. RIF inhibits DNA-dependent RNA polymerase in bacterial cells by binding its beta-subunit, thus preventing transcription to RNA. Its MIC against replicating TB bacilli is 0.1 g/ml and its minimum bactericidal activity (MBC) is 0.5 g/mL. It is one of the rare anti-TB drugs with some activity against nonreplicating cells.
Isoniazid
Isoniazid (INH) is a first-line antituberculous medication discovered in 1952 and used in the prevention (alone) and treatment (in combination) of tuberculosis. Isoniazid is a prodrug and must be activated by a bacterial catalase to inhibit the synthesis of mycolic acids in the mycobacterial cell wall. Consequently, INH is bactericidal to rapidly-dividing mycobacteria, with an MIC of 0.05 g/ml and an MBC of 1 g/ml, but is inactive if the mycobacterium is nonreplicating or slow-growing.
Pyrazinamide
Pyrazinamide (PZA) is a synthetic derivative of nicotinamide requiring ctivation by the mycobacterial enzyme pyrazinamidase, only active under acidic conditions which are thought to be found within the phagolysosomal compartment of macrophages. The conversion product, pyrazinoic acid, inhibits fatty acid synthetase I, required by the bacterium to synthesize fatty acids, though this has been disputed. It has an MIC of 6 g/ml and is not cidal under in vitro conditions. Overall, its mechanism of action and reasons for good sterilizing activity in vivo are poorly understood. It is part of the 4-drug combination recommended by the WHO to treat drugsensitive tuberculosis and is also included in most econd-line regimens.
Kanamycin
Kanamycin (KM) is an aminoglycoside antibiotic belonging to the same class of drugs as Streptomycin, one of the first drugs used to treat TB in the 50 s. It kills sensitive bacteria by binding to the 30S ribosomal subunit and interfering with protein synthesis. Its MIC and MBC against MTB are 2 and 6 g/mL, respectively, with a remarkably low MBC/MIC ratio. However, KM is only used to treat serious bacterial infections due to severe renal toxicity and ototoxicity. No interaction with the metabolism of other drugs has been reported. The drug is approved by the Korean Ministry of Food and Drug Safety (MFDS) but not the US FDA for use against pulmonary TB.
Moxifloxacin
Moxifloxacin (MXF) is a synthetic fluoroquinolone antibiotic. It inhibits bacterial topoisomerase II (DNA gyrase) and topoisomerase IV, which are essential enzymes playing a crucial role in the replication and repair of bacterial DNA. Its MIC, MBC and intracellular activity against MTB are 0.5, 2 and 1 g/mL, respectively, with again a low MBC/MIC ratio.
3
Dosing 8 hours before surgery. -Rifampicin (RIF) will be dosed orally at 600mg or 50mg for subjects under 50kg of bodyweight;-Isoniazid (INH) will be dosed orally at 300mg;-Pyrazinamide (PZA) will be dosed orally at 1.5g;-Moxifloxacin (MXF) will be dosed orally at 400mg;-Kanamycin (KM) will be dosed intramuscularly at 1g or 750mg for subjects under 50kg of body weight
Rifampicin
Rifampicin or rifampin (RIF) is a semi-synthetic compound derived from Amycolatopsis rifamycinica. It is mostly used in combination to treat TB, while other disease indications include brucellosis, leprosy, legionnaire's disease and problematic drug-resistant staphylococcal infections. RIF inhibits DNA-dependent RNA polymerase in bacterial cells by binding its beta-subunit, thus preventing transcription to RNA. Its MIC against replicating TB bacilli is 0.1 g/ml and its minimum bactericidal activity (MBC) is 0.5 g/mL. It is one of the rare anti-TB drugs with some activity against nonreplicating cells.
Isoniazid
Isoniazid (INH) is a first-line antituberculous medication discovered in 1952 and used in the prevention (alone) and treatment (in combination) of tuberculosis. Isoniazid is a prodrug and must be activated by a bacterial catalase to inhibit the synthesis of mycolic acids in the mycobacterial cell wall. Consequently, INH is bactericidal to rapidly-dividing mycobacteria, with an MIC of 0.05 g/ml and an MBC of 1 g/ml, but is inactive if the mycobacterium is nonreplicating or slow-growing.
Pyrazinamide
Pyrazinamide (PZA) is a synthetic derivative of nicotinamide requiring ctivation by the mycobacterial enzyme pyrazinamidase, only active under acidic conditions which are thought to be found within the phagolysosomal compartment of macrophages. The conversion product, pyrazinoic acid, inhibits fatty acid synthetase I, required by the bacterium to synthesize fatty acids, though this has been disputed. It has an MIC of 6 g/ml and is not cidal under in vitro conditions. Overall, its mechanism of action and reasons for good sterilizing activity in vivo are poorly understood. It is part of the 4-drug combination recommended by the WHO to treat drugsensitive tuberculosis and is also included in most econd-line regimens.
Kanamycin
Kanamycin (KM) is an aminoglycoside antibiotic belonging to the same class of drugs as Streptomycin, one of the first drugs used to treat TB in the 50 s. It kills sensitive bacteria by binding to the 30S ribosomal subunit and interfering with protein synthesis. Its MIC and MBC against MTB are 2 and 6 g/mL, respectively, with a remarkably low MBC/MIC ratio. However, KM is only used to treat serious bacterial infections due to severe renal toxicity and ototoxicity. No interaction with the metabolism of other drugs has been reported. The drug is approved by the Korean Ministry of Food and Drug Safety (MFDS) but not the US FDA for use against pulmonary TB.
Moxifloxacin
Moxifloxacin (MXF) is a synthetic fluoroquinolone antibiotic. It inhibits bacterial topoisomerase II (DNA gyrase) and topoisomerase IV, which are essential enzymes playing a crucial role in the replication and repair of bacterial DNA. Its MIC, MBC and intracellular activity against MTB are 0.5, 2 and 1 g/mL, respectively, with again a low MBC/MIC ratio.
4
Dosing 12 hours before surgery. -Rifampicin (RIF) will be dosed orally at 600mg or 50mg for subjects under 50kg of bodyweight;-Isoniazid (INH) will be dosed orally at 300mg;-Pyrazinamide (PZA) will be dosed orally at 1.5g;-Moxifloxacin (MXF) will be dosed orally at 400mg;-Kanamycin (KM) will be dosed intramuscularly at 1g or 750mg for subjects under 50kg of body weight
Rifampicin
Rifampicin or rifampin (RIF) is a semi-synthetic compound derived from Amycolatopsis rifamycinica. It is mostly used in combination to treat TB, while other disease indications include brucellosis, leprosy, legionnaire's disease and problematic drug-resistant staphylococcal infections. RIF inhibits DNA-dependent RNA polymerase in bacterial cells by binding its beta-subunit, thus preventing transcription to RNA. Its MIC against replicating TB bacilli is 0.1 g/ml and its minimum bactericidal activity (MBC) is 0.5 g/mL. It is one of the rare anti-TB drugs with some activity against nonreplicating cells.
Isoniazid
Isoniazid (INH) is a first-line antituberculous medication discovered in 1952 and used in the prevention (alone) and treatment (in combination) of tuberculosis. Isoniazid is a prodrug and must be activated by a bacterial catalase to inhibit the synthesis of mycolic acids in the mycobacterial cell wall. Consequently, INH is bactericidal to rapidly-dividing mycobacteria, with an MIC of 0.05 g/ml and an MBC of 1 g/ml, but is inactive if the mycobacterium is nonreplicating or slow-growing.
Pyrazinamide
Pyrazinamide (PZA) is a synthetic derivative of nicotinamide requiring ctivation by the mycobacterial enzyme pyrazinamidase, only active under acidic conditions which are thought to be found within the phagolysosomal compartment of macrophages. The conversion product, pyrazinoic acid, inhibits fatty acid synthetase I, required by the bacterium to synthesize fatty acids, though this has been disputed. It has an MIC of 6 g/ml and is not cidal under in vitro conditions. Overall, its mechanism of action and reasons for good sterilizing activity in vivo are poorly understood. It is part of the 4-drug combination recommended by the WHO to treat drugsensitive tuberculosis and is also included in most econd-line regimens.
Kanamycin
Kanamycin (KM) is an aminoglycoside antibiotic belonging to the same class of drugs as Streptomycin, one of the first drugs used to treat TB in the 50 s. It kills sensitive bacteria by binding to the 30S ribosomal subunit and interfering with protein synthesis. Its MIC and MBC against MTB are 2 and 6 g/mL, respectively, with a remarkably low MBC/MIC ratio. However, KM is only used to treat serious bacterial infections due to severe renal toxicity and ototoxicity. No interaction with the metabolism of other drugs has been reported. The drug is approved by the Korean Ministry of Food and Drug Safety (MFDS) but not the US FDA for use against pulmonary TB.
Moxifloxacin
Moxifloxacin (MXF) is a synthetic fluoroquinolone antibiotic. It inhibits bacterial topoisomerase II (DNA gyrase) and topoisomerase IV, which are essential enzymes playing a crucial role in the replication and repair of bacterial DNA. Its MIC, MBC and intracellular activity against MTB are 0.5, 2 and 1 g/mL, respectively, with again a low MBC/MIC ratio.
5
Dosing 24 hours before surgery. -Rifampicin (RIF) will be dosed orally at 600mg or 50mg for subjects under 50kg of bodyweight;-Isoniazid (INH) will be dosed orally at 300mg;-Pyrazinamide (PZA) will be dosed orally at 1.5g;-Moxifloxacin (MXF) will be dosed orally at 400mg;-Kanamycin (KM) will be dosed intramuscularly at 1g or 750mg for subjects under 50kg of body weight
Rifampicin
Rifampicin or rifampin (RIF) is a semi-synthetic compound derived from Amycolatopsis rifamycinica. It is mostly used in combination to treat TB, while other disease indications include brucellosis, leprosy, legionnaire's disease and problematic drug-resistant staphylococcal infections. RIF inhibits DNA-dependent RNA polymerase in bacterial cells by binding its beta-subunit, thus preventing transcription to RNA. Its MIC against replicating TB bacilli is 0.1 g/ml and its minimum bactericidal activity (MBC) is 0.5 g/mL. It is one of the rare anti-TB drugs with some activity against nonreplicating cells.
Isoniazid
Isoniazid (INH) is a first-line antituberculous medication discovered in 1952 and used in the prevention (alone) and treatment (in combination) of tuberculosis. Isoniazid is a prodrug and must be activated by a bacterial catalase to inhibit the synthesis of mycolic acids in the mycobacterial cell wall. Consequently, INH is bactericidal to rapidly-dividing mycobacteria, with an MIC of 0.05 g/ml and an MBC of 1 g/ml, but is inactive if the mycobacterium is nonreplicating or slow-growing.
Pyrazinamide
Pyrazinamide (PZA) is a synthetic derivative of nicotinamide requiring ctivation by the mycobacterial enzyme pyrazinamidase, only active under acidic conditions which are thought to be found within the phagolysosomal compartment of macrophages. The conversion product, pyrazinoic acid, inhibits fatty acid synthetase I, required by the bacterium to synthesize fatty acids, though this has been disputed. It has an MIC of 6 g/ml and is not cidal under in vitro conditions. Overall, its mechanism of action and reasons for good sterilizing activity in vivo are poorly understood. It is part of the 4-drug combination recommended by the WHO to treat drugsensitive tuberculosis and is also included in most econd-line regimens.
Kanamycin
Kanamycin (KM) is an aminoglycoside antibiotic belonging to the same class of drugs as Streptomycin, one of the first drugs used to treat TB in the 50 s. It kills sensitive bacteria by binding to the 30S ribosomal subunit and interfering with protein synthesis. Its MIC and MBC against MTB are 2 and 6 g/mL, respectively, with a remarkably low MBC/MIC ratio. However, KM is only used to treat serious bacterial infections due to severe renal toxicity and ototoxicity. No interaction with the metabolism of other drugs has been reported. The drug is approved by the Korean Ministry of Food and Drug Safety (MFDS) but not the US FDA for use against pulmonary TB.
Moxifloxacin
Moxifloxacin (MXF) is a synthetic fluoroquinolone antibiotic. It inhibits bacterial topoisomerase II (DNA gyrase) and topoisomerase IV, which are essential enzymes playing a crucial role in the replication and repair of bacterial DNA. Its MIC, MBC and intracellular activity against MTB are 0.5, 2 and 1 g/mL, respectively, with again a low MBC/MIC ratio.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Rifampicin
Rifampicin or rifampin (RIF) is a semi-synthetic compound derived from Amycolatopsis rifamycinica. It is mostly used in combination to treat TB, while other disease indications include brucellosis, leprosy, legionnaire's disease and problematic drug-resistant staphylococcal infections. RIF inhibits DNA-dependent RNA polymerase in bacterial cells by binding its beta-subunit, thus preventing transcription to RNA. Its MIC against replicating TB bacilli is 0.1 g/ml and its minimum bactericidal activity (MBC) is 0.5 g/mL. It is one of the rare anti-TB drugs with some activity against nonreplicating cells.
Isoniazid
Isoniazid (INH) is a first-line antituberculous medication discovered in 1952 and used in the prevention (alone) and treatment (in combination) of tuberculosis. Isoniazid is a prodrug and must be activated by a bacterial catalase to inhibit the synthesis of mycolic acids in the mycobacterial cell wall. Consequently, INH is bactericidal to rapidly-dividing mycobacteria, with an MIC of 0.05 g/ml and an MBC of 1 g/ml, but is inactive if the mycobacterium is nonreplicating or slow-growing.
Pyrazinamide
Pyrazinamide (PZA) is a synthetic derivative of nicotinamide requiring ctivation by the mycobacterial enzyme pyrazinamidase, only active under acidic conditions which are thought to be found within the phagolysosomal compartment of macrophages. The conversion product, pyrazinoic acid, inhibits fatty acid synthetase I, required by the bacterium to synthesize fatty acids, though this has been disputed. It has an MIC of 6 g/ml and is not cidal under in vitro conditions. Overall, its mechanism of action and reasons for good sterilizing activity in vivo are poorly understood. It is part of the 4-drug combination recommended by the WHO to treat drugsensitive tuberculosis and is also included in most econd-line regimens.
Kanamycin
Kanamycin (KM) is an aminoglycoside antibiotic belonging to the same class of drugs as Streptomycin, one of the first drugs used to treat TB in the 50 s. It kills sensitive bacteria by binding to the 30S ribosomal subunit and interfering with protein synthesis. Its MIC and MBC against MTB are 2 and 6 g/mL, respectively, with a remarkably low MBC/MIC ratio. However, KM is only used to treat serious bacterial infections due to severe renal toxicity and ototoxicity. No interaction with the metabolism of other drugs has been reported. The drug is approved by the Korean Ministry of Food and Drug Safety (MFDS) but not the US FDA for use against pulmonary TB.
Moxifloxacin
Moxifloxacin (MXF) is a synthetic fluoroquinolone antibiotic. It inhibits bacterial topoisomerase II (DNA gyrase) and topoisomerase IV, which are essential enzymes playing a crucial role in the replication and repair of bacterial DNA. Its MIC, MBC and intracellular activity against MTB are 0.5, 2 and 1 g/mL, respectively, with again a low MBC/MIC ratio.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Selected for lung resection due to anti-tuberculous treatment failure, multidrug resistant disease, or other reason determined by the treating physician
3. Radiographic evidence of tuberculous disease of the lung(s)
4. If already on an aminoglycoside, ability and willingness to substitute this aminoglycoside with KM for the one study dose
5. Willingness to receive MRI scan and marker and Gadolinium injection
6. Willingness to have samples stored
7. Ability and willingness to give written or oral informed consent
Exclusion Criteria
2. Women of childbearing potential who are pregnant, breast feeding, or unwilling to avoid pregnancy (i.e., the use of appropriate contraception including oral and subcutaneous implantable hormonal contraceptives, condoms, diaphragm, intrauterine device (IUD), or abstinence from sexual intercourse) \[Note: Prospective female participants of childbearing potential must have negative pregnancy test (urine) within 48 hours prior to study entry.\]
3. Allergy or hypersensitivity to any of the 5 study drugs, any aminoglycoside, or rifamycin (those allergic to fluoroquinolones will not receive MXF).
4. Those with severe gout
5. Severe claustrophobia or Gadolinium hypersensitivity (tbc)
6. Renal, hepatic, auditory and/or vestibular impairment.
1. Serum creatinine greater than 2.0 mg/dL (renal)
2. Aspartate aminotransferase (AST or SGOT) greater than 100 IU/L (LFTs)
3. Alanine aminotransferase (ALT or SGPT) greater than 100 IU/L (LFTs)
4. Total bilirubin greater than 2.0 mg/dL (LFTs)
7. The use of any of Rifampicin (RIF), Rifapentine or Rifabutin within 30 days prior to the study
8. HIV infection, determined by a positive HIV test performed with the past 6 months
9. The use of any of the following drugs within 30 days prior to study:
1. Systemic cancer chemotherapy
2. Systemic corticosteroids (oral or IV only) with the following
3. Systemic IND agents other than Linezolid
4. Antiretroviral medications
5. Growth factors
10. The need for ongoing therapy with warfarin, phenytoin, lithium cholestrymine, levodopa, cimetidine, disulfiram, ergot derivatives, fosphenytoin, carbamazepine, cyclosporine, tacrolimus, sirolimus, amiodarone or Phenobarbital (If a potential subject is on one of these medications but it is being stopped per standard of care, to be eligible for the study the drug must be stopped at least one day prior to receiving study drug. A longer washout period is not necessary.) The only exception to this is amiodarone; because of amiodarone s long half-life and potential for QT prolongation, it should be stopped at least 60 days prior to receiving study drugs.
20 Years
100 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Korean Center for Disease Control and Prevention
OTHER_GOV
International Tuberculosis Research Center
OTHER
Novartis Institute for Tropical Medicine
UNKNOWN
Asian Medical Center
UNKNOWN
National Institute of Allergy and Infectious Diseases (NIAID)
NIH
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Clifton E Barry, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
National Institute of Allergy and Infectious Diseases (NIAID)
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Pusan National Unversity Hospital (PNUH)
Busan, , South Korea
Asan Medical Center
Seoul, , South Korea
National Medical Center
Seoul, , South Korea
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Soman A, Honeybourne D, Andrews J, Jevons G, Wise R. Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother. 1999 Dec;44(6):835-8. doi: 10.1093/jac/44.6.835.
Drexler DM, Garrett TJ, Cantone JL, Diters RW, Mitroka JG, Prieto Conaway MC, Adams SP, Yost RA, Sanders M. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Methods. 2007 May-Jun;55(3):279-88. doi: 10.1016/j.vascn.2006.11.004. Epub 2006 Dec 5.
Wagner C, Sauermann R, Joukhadar C. Principles of antibiotic penetration into abscess fluid. Pharmacology. 2006;78(1):1-10. doi: 10.1159/000094668. Epub 2006 Jul 19.
Strydom N, Gupta SV, Fox WS, Via LE, Bang H, Lee M, Eum S, Shim T, Barry CE 3rd, Zimmerman M, Dartois V, Savic RM. Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: A mechanistic model and tool for regimen and dose optimization. PLoS Med. 2019 Apr 2;16(4):e1002773. doi: 10.1371/journal.pmed.1002773. eCollection 2019 Apr.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
09-I-N061
Identifier Type: -
Identifier Source: secondary_id
999909061
Identifier Type: -
Identifier Source: org_study_id