Drug Interaction Between Coartem® and Nevirapine, Efavirenz or Rifampicin in HIV Positive Ugandan Patients
NCT ID: NCT00620438
Last Updated: 2010-12-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
PHASE4
90 participants
INTERVENTIONAL
2008-02-29
2011-07-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
There are no data on the interaction between Coartem® and any of the antiretroviral agents. Both components of Coartem® are substrates for the 3A4 isoform of cytochrome P450. Despite the lack of data, antiretroviral drugs and/or antituberculous drugs in addition to Coartem® are of necessity co-prescribed daily in the African setting. Nevirapine, efavirenz and rifampicin are known inducers of cytochrome P450 3A4. A technical consultation convened by WHO in June, 2004 concluded that additional research on interactions between antiretroviral and antimalarial drugs is urgently needed.
We propose to perform a suite of pharmacokinetic studies to evaluate these interactions in HIV infected Ugandan patients. The aim of these studies is to evaluate the pharmacokinetic interaction between Coartem® and commonly co-prescribed inducers of 3A4 i.e. nevirapine, efavirenz and rifampicin.
1. Comparison of steady state pharmacokinetics of Coartem® in HIV-infected patients prior to commencement of nevirapine and at nevirapine steady state
2. Comparison of steady state pharmacokinetics of Coartem® in HIV-infected patients prior to commencement of efavirenz and at efavirenz steady state
3. Comparison of steady state pharmacokinetics of Coartem® in Ugandan patients at rifampicin steady state and without rifampicin
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Antimalarial Activity and Mechanism of Action: 1, 8 The antimalarial activity of artemether and that of its active metabolite, dihydroartemisinin (DHA) have been extensively studied in vitro. These are very potent antimalarial compounds. The IC50 of artemether ranges from 0.1 to 20 nmol/L and the IC50 for DHA ranges from 0.1 to 15 nmol/L. In vitro studies have shown artemether to be 2 to 3 times less active than its metabolite, DHA.
The exact mechanisms of action of artemether and lumefantrine are unknown, but both agents appear to act on the parasite's organelles. Artemether's action depends on its endoperoxide bridge, which interacts with heme iron to cause free radical damage to the malaria parasite. Lumefantrine most likely interferes with heme polymerization, which is a critical detoxifying pathway for the malaria parasite. Both agents may have secondary actions that include inhibition of parasite nucleic acid and protein synthesis; however, these actions have not been well-described.
The varied pharmacokinetic profiles of the two antimalarial agents appear to create a synergistic effect. Artemether works rapidly to decrease the parasite load and improve patients' clinical symptoms. Lumefantrine is long-acting and appears to prevent recrudescence (reappearance of the disease after inadequate or failed drug therapy). The different actions of the two agents may also reduce the emergence of resistance. Artemether and DHA have been shown to decrease parasite burden by about 104 per asexual life cycle in about 2 days. Thus, the 3-day course of the combination therapy can potentially decrease the parasite burden by about 108.
Drug Interactions Pharmacokinetic and electrocardiographic interactions between artemether-lumefantrine and the mefloquine were studied in 42 healthy volunteers. Like artemether-lumefantrine, mefloquine is a substrate for CYP 3A4; however, it is also a potential CYP 3A4 inhibitor. Pharmacokinetic parameters for artemether, DHA, and mefloquine were unchanged; however, lumefantrine concentrations decreased by 30-40% when given with mefloquine. The clinical significance of this interaction is not known. Co-administration of the antimalarial agents resulted in no increased adverse effects. 13
An additional study evaluated the effects of concomitant administration with ketoconazole, a potent CYP 3A4 inhibitor, and artemether-lumefantrine. The study was carried out in 16 healthy volunteers who received single doses of artemether-lumefantrine either alone or in combination with multiple doses of ketoconazole. Artemether, DHA, and lumefantrine pharmacokinetics were altered by ketoconazole. AUC and Cmax increased for all three compounds and terminal half-life increased for artemether and DHA. None of the changes in PK parameters were greater than those changes observed in healthy volunteers taking artemether-lumefantrine with a high fat meal (i.e. a 16-fold increase in AUC). There was no increase in observed side effects or electrocardiographic changes. Dosage adjustments do not appear to be necessary with concomitant ketoconazole administration.14
A study of 42 healthy Caucasian volunteers was conducted to investigate pharmacokinetic or electrocardiographic effects of concomitant administration of IV quinine and artemether-lumefantrine. QTc prolongation was not associated with artemether-lumefantrine administration alone; however transient increases in QTc interval were noted in the combination groups. PK variables for lumefantrine and quinine were unchanged, but artemether and DHA plasma concentrations decreased with concomitant quinine administration. The exact mechanism for this decrease could not be explained for the results of this study.15
Artemether is metabolized via CYP 3A4 to dihydroartemisinin (although both compounds have antimalarial activity, dihydroartemisinin has greater potency). Induction of CYP 3A4 would increase dihydroartemisinin but decrease artemether.
Study objectives General objective To evaluate the pharmacokinetic interaction between Coartem® and commonly co-prescribed inducers of 3A4 i.e. nevirapine, efavirenz and rifampicin in HIV positive patients.
Specific objectives
1. To compare the steady state pharmacokinetics of Coartem® in HIV-infected patients prior to commencement of nevirapine and at nevirapine steady state
2. To compare the steady state pharmacokinetics of Coartem® in HIV-infected patients prior to commencement of efavirenz and at efavirenz steady state
3. To compare the steady state pharmacokinetics of Coartem® in Ugandan patients at rifampicin steady state and without rifampicin therapy
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Keywords
Explore important study keywords that can help with search, categorization, and topic discovery.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
CROSSOVER
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
1
nevirapine arm
Lumefantrine-artemether and nevirapine
Administration of lumefantrine 480mg co-formulated with artemether 80mg twice daily for three days to HIV positive patients receiving nevirapine 200mg twice daily as part of their antiretroviral treatment
2
efavirenz arm
lumefantrine-artemether and efavirenz
Administration of lumefantrine 480mg co-formulated with artemether 80mg twice daily for three days to HIV positive adults receiving efavirenz tablets 600mg once daily
3
Rifampicin arm
Lumefantrine-artemether and rifampicin
Administration of lumefantrine 480mg co-formulated with artemether 80mg twice daily for three days to patients receiving rifampicin as part of fixed dose combination therapy for tuberculosis
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Lumefantrine-artemether and nevirapine
Administration of lumefantrine 480mg co-formulated with artemether 80mg twice daily for three days to HIV positive patients receiving nevirapine 200mg twice daily as part of their antiretroviral treatment
lumefantrine-artemether and efavirenz
Administration of lumefantrine 480mg co-formulated with artemether 80mg twice daily for three days to HIV positive adults receiving efavirenz tablets 600mg once daily
Lumefantrine-artemether and rifampicin
Administration of lumefantrine 480mg co-formulated with artemether 80mg twice daily for three days to patients receiving rifampicin as part of fixed dose combination therapy for tuberculosis
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Ability to provide full written informed consent
* Confirmed diagnosis of HIV infection
Exclusion Criteria
* Liver and renal function tests \> 3 times the upper limit of normal
* Pregnancy
* Use of known inhibitors or inducers of cytochrome P450 or P-glycoprotein.
* Use of herbal medications (information will be obtained from patients' medication history through interview with the patient)
* Abnormal EKG ie QTc (Rate adjusted QT interval) \>450ms (men) or \>470ms (women)
* Intercurrent Illness including malaria
* Known hypersensitivity to artemisinin-derivatives, halofantrine or lumefantrine
* History of cardiac disease
18 Years
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Health Research Board, Ireland
OTHER
Makerere University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Infectious Diseases Institute, Makerere University
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Concepta Merry, PhD
Role: PRINCIPAL_INVESTIGATOR
Trinity Colleg Dublin
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Infectious Diseases Institute, Makerere University
Kampala, , Uganda
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, Day NP, White NJ, Abelo A, Tarning J. Artemether-lumefantrine co-administration with antiretrovirals: population pharmacokinetics and dosing implications. Br J Clin Pharmacol. 2015 Apr;79(4):636-49. doi: 10.1111/bcp.12529.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CPR 005
Identifier Type: -
Identifier Source: org_study_id